Von Hippel–Lindau (Vhl) protein inhibits hypoxia-inducible factor (Hif), yet its deletion in murine retina does not cause the extensive angiogenesis expected with Hif induction. The mechanism is unclear. Here we show that retinoblastoma tumor suppressor (Rb1) constrains expression of Hif target genes in the Vhl-/- retina. Deleting Rb1 induced extensive retinal neovascularization and autophagic ablation of photoreceptors in the Vhl-/- retina. RNA sequencing, ChIP and reporter assays showed Rb1 recruitment to and repression of certain Hif target genes. Activating Rb1 by deleting cyclin D1 induced a partial defect in the retinal superficial vascular plexus (SVP). Unexpectedly, removing Vhl suppressed retinoblastoma formation in murine Rb1/Rbl1-deficient retina, but generated subretinal vascular growths resembling retinal angiomatous proliferation (RAP), and retinal capillary hemangioblastoma (RCH). Most stromal cells in the RAP/RCH-like lesions were Sox9+, suggesting a Müller glia origin, and expressed Lgals3, a marker of human brain hemangioblastoma. Thus, the Rb family limit Hif target gene expression in the Vhl-/- retina, and removing this inhibitory signal generates new models for RAP and RCH.
Ran Wei, Xiang Ren, Hongyu Kong, Zhongping Lv, Yongjiang Chen, Yunjing Tang, Yujiao Wang, Lirong Xiao, Sabiha Hacibekiroglu, Chen Liang, Andras Nagy, Rod Bremner, Danian Chen
Background: Innate immune activation impacts lung transplant outcomes. Dectin-1 is an innate receptor important for pathogen recognition. We hypothesized that genotypes reducing dectin-1 activity would be associated with infection, graft dysfunction, and death in lung transplant recipients. Methods: We assessed the rs16910526 CLEC7A gene polymorphism Y238X, which results in dectin-1 truncation, in 321 lung allograft recipients at a single institution and in 1,129 lung allograft recipients in the multi-center lung transplant outcomes group (LTOG) cohort. Differences in dectin-1 mRNA, cytokines, protein levels, immunophenotypes, and clinical factors were assessed. Results: Y238X carriers had decreased dectin-1 mRNA expression (P = 0.0001), decreased soluble dectin-1 protein concentrations in BAL (P = 0.008) and plasma (P = 0.04), and decreased monocyte surface dectin-1 (P = 0.01) compared to wild type subjects. Y238X carriers had an increased risk of fungal pathogens (HR 1.17, CI 1.0 – 1.4), an increased risk of graft dysfunction or death (HR 1.6, CI 1.0 – 2.6), as well increased mortality in the UCSF cohort (HR 1.8, CI 1.1 – 3.8) and in the LTOG cohort (HR 1.3, CI 1.1 – 1.6), compared to CLEC7A wildtype subjects. Conclusion: Increased rates of graft dysfunction and death associated with this dectin-1 polymorphism may be amplified by immunosuppression that drives higher fungal burden from compromised pathogen recognition. Funding: Project funding came from the UCSF Nina Ireland Program for Lung Health (NIPLH) Innovative Grant program, award number IK2CX001034 from the Clinical Sciences Research & Development Service of the VA Office of Research and Development, and the Joel D. Cooper Career Development Award from the International Society for Heart and Lung Transplantation.
Daniel R. Calabrese, Ping Wang, Tiffany Chong, Jonathan Hoover, Jonathan P. Singer, Dara Torgerson, Steven R. Hays, Jeffrey A. Golden, Jasleen Kukreja, Daniel Dugger, Jason D. Christie, LTOG investigators, John R. Greenland
Previous work has reported the important links between cellular bioenergetics and the development of chronic kidney disease, highlighting the potential for targeting metabolic functions to regulate disease progression. More recently, it has been shown that alterations in fatty acid oxidation (FAO) can have an important impact on the progression of kidney disease. In this work, we demonstrate that loss of miR-33, an important regulator of lipid metabolism, can prevent the repression of FAO in fibrotic kidneys and reduce lipid accumulation. These changes were associated with a dramatic reduction in the extent of fibrosis induced in two different mouse models of kidney disease. These effects were not related to changes in circulating leukocytes, as bone marrow transplant from miR-33 deficient animals did not have a similar impact on disease progression. Most importantly, targeted delivery of miR-33 peptide nucleic acid (PNA) inhibitors to the kidney and other acidic microenvironments was accomplished using pH low insertion peptides (pHLIP) as a carrier. This was effective at both increasing the expression of factors involved in FAO and reducing the development of fibrosis. Together, these findings suggest that miR-33 may be an attractive therapeutic target for the treatment of chronic kidney disease.
Nathan L. Price, Verónica Miguel, Wen Ding, Abhishek K. Singh, Shipra Malik, Noemi Rotllan, Anna Moshnikova, Jakub Toczek, Caroline Zeiss, Mehran M. Sadeghi, Noemi Arias, Ángel Baldán, Oleg A. Andreev, Diego Rodríguez-Puyol, Raman Bahal, Yana K. Reshetnyak, Yajaira Suárez, Carlos Fernández-Hernando, Santiago Lamas
Background: Myeloid-derived suppressor cells (MDSCs) are elevated in glioblastoma (GBM) patient circulation, present in tumor tissue, and associated with poor prognosis. While low-dose chemotherapy reduces MDSCs in preclinical models, the use of this strategy to reduce MDSCs in GBM patients has yet to be evaluated. Methods: A phase 0/1 dose-escalation clinical trial was conducted in recurrent glioblastoma patients treated 5-7 days prior to surgery with low-dose chemotherapy via capecitabine followed by concomitant low-dose capecitabine and bevacizumab. Clinical outcomes, including progression-free and overall survival, were measured, along with safety and toxicity profiles. Over the treatment time course, circulating MDSC levels were measured by multi-parameter flow cytometry, and tumor tissue immune profiles were assessed via mass cytometry time-of-flight. Results: A total of 11 patients were enrolled across escalating dose cohorts of 150, 300, and 450 mg bid. No serious adverse events related to the drug combination were observed. Compared to pre-treatment baseline, circulating MDSCs were found to be higher after surgery in the 150 mg treatment arm and lower in the 300 mg and 450 mg treatment arms. Increased cytotoxic immune infiltration was observed after low-dose capecitabine compared to untreated GBM patients in the 300 mg and 450 mg treatment arms. Conclusions: Low-dose, metronomic capecitabine in combination with bevacizumab is well tolerated in GBM patients and was associated with a reduction in circulating MDSC levels and an increase in cytotoxic immune infiltration into the tumor microenvironment. Trial registration: NCT02669173
David M. Peereboom, Tyler J. Alban, Mathew M. Grabowski, Alvaro G. Alvarado, Balint Otvos, Defne Bayik, Gustavo Roversi, Mary McGraw, Pengjing Huang, Alireza M. Mohammadi, Harley I. Kornblum, Tomas Radivoyevitch, Manmeet S. Ahluwalia, Michael A. Vogelbaum, Justin D. Lathia
To develop a systems biology model of fibrosis progression within the human lung we performed RNAseq and microRNA analysis on 95 samples obtained from 10 idiopathic pulmonary fibrosis (IPF) and 6 control lungs. Extent of fibrosis in each sample was assessed by microCT measured alveolar surface density (ASD) and confirmed by histology. Regulatory gene expression networks were identified using linear mixed-effect models and dynamic regulatory events miner (DREM). Differential gene expression analysis identified a core set of genes increased or decreased before fibrosis was histologically evident that continued to change with advanced fibrosis. DREM generated a systems biology model of fibrosis progression (available at http: www.sb.cs.cmu.edu/IPFReg) that identified progressively divergent gene expression tracks with microRNAs and transcription factors that specifically regulate early or advanced fibrosis. We confirmed model predictions by demonstrating that expression of POU2AF1, previously unassociated with lung disease but proposed by the model as regulator, is increased in B-lymphocytes in IPF lungs and that POU2AF1 knockout mice were protected from bleomycin induced lung fibrosis. Our results reveal distinct regulation of gene expression changes in IPF tissue that remained structurally normal compared with moderate or advanced fibrosis and suggest distinct regulatory mechanisms for each stage.
John E. McDonough, Farida Ahangari, Qin Li, Siddhartha Jain, Stijn E. Verleden, Jose Herazo-Maya, Milica Vukmirovic, Giuseppe DeIuliis, Argyrios Tzouvelekis, Naoya Tanabe, Fanny Chu, Xiting Yan, Johny Verschakelen, Robert J. Homer, Dimitris V. Manatakis, Junke Zhang, Jun Ding, Karen Maes, Laurens De Sadeleer, Robin Vos, Arne Neyrinck, Panayiotis V. Benos, Ziv Bar-Joseph, Dean Tantin, James C. Hogg, Bart M. Vanaudenaerde, Wim A. Wuyts, Naftali Kaminski
Glomerular disease is characterized by proteinuria and glomerulosclerosis, two pathologic features caused by podocyte injury and mesangial cell activation, respectively. However, whether these two events are linked remains elusive. Here, we report that sonic hedgehog (Shh) is the mediator that connects podocyte damage to mesangial activation and glomerulosclerosis. Shh was induced in glomerular podocytes in various models of proteinuric chronic kidney diseases (CKD). However, mesangial cells in the glomeruli, but not podocytes, responded to hedgehog ligand. In vitro, Shh was induced in podocytes after injury and selectively promoted mesangial cell activation and proliferation. In a mini-organ culture of isolated glomeruli, Shh promoted mesangial activation but did not affect the integrity of podocytes. Podocyte-specific ablation of Shh in vivo exhibited no effect on proteinuria after adriamycin injection but hampered mesangial activation and glomerulosclerosis. Consistently, pharmacologic blockade of Shh signaling decoupled proteinuria from glomerulosclerosis. In humans, Shh was upregulated in glomerular podocytes in patients with CKD and its circulating level was associated with glomerulosclerosis but not proteinuria. These studies demonstrate that Shh mechanistically links podocyte injury to mesangial activation in the pathogenesis of glomerular diseases. Our findings also illustrate a crucial role for podocyte-mesangial communication in connecting proteinuria to glomerulosclerosis.
Dong Zhou, Haiyan Fu, Yang Han, Lu Zhang, Shijia Liu, Lin Lin, Donna B. Stolz, Youhua Liu
Targeted therapies and immunotherapy have shown promise in patients with non-small cell lung cancer (NSCLC). However, the majority of patients fail or become resistant to treatment, emphasizing the need for novel treatments. In this study, we confirm the prognostic value of AXL levels in NSCLC and demonstrate potent anti-tumor activity of the AXL-targeting antibody-drug conjugate enapotamab vedotin across different NSCLC subtypes in a mouse clinical trial of human NSCLC. Tumor regression or stasis was observed in 17/61 (28%) of the PDX models, and was associated with AXL mRNA expression levels. Significant single agent activity of enapotamab vedotin was validated in vivo in 9 of 10 AXL-expressing NSCLC xenograft models. In a panel of EGFR-mutant NSCLC cell lines rendered resistant to EGFR inhibitors (EGFRi) in vitro, we observed de novo or increased AXL protein expression concomitant with enapotamab vedotin-mediated cytotoxicity. Enapotamab vedotin also showed anti-tumor activity in vivo in 3 EGFR-mutant, EGFRi-resistant PDX models, including an osimertinib-resistant NSCLC PDX model. In summary, enapotamab vedotin has promising therapeutic potential in NSCLC. The safety and preliminary efficacy of enapotamab vedotin are currently being evaluated in the clinic across multiple solid tumor types, including NSCLC.
Louise A. Koopman, Mikkel G. Terp, Gijs G. Zom, Maarten L. Janmaat, Kirstine Jacobsen, Elke Gresnigt - Van den Heuvel, Marcel Brandhorst, Ulf Forssmann, Frederik M. de Bree, Nora Pencheva, Andreas Lingnau, Maria A. Zipeto, Paul W.H.I. Parren, Esther C.W. Breij, Henrik J. Ditzel
Background. The presence of an early repolarization pattern (ERP) on the surface electrocardiogram (ECG) is associated with risk of ventricular fibrillation and sudden cardiac death. Family studies have shown that ERP is a highly heritable trait but molecular genetic determinants are unknown. Methods. To identify genetic susceptibility loci for ERP, we performed a GWAS and meta-analysis in 2,181 cases and 23,641 controls of European ancestry. Results. We identified a genome-wide significant (p<5E-8) locus in the KCND3 (potassium voltage gated channel subfamily D member 3) gene that was successfully replicated in additional 1,124 cases and 12,510 controls. A subsequent joint meta-analysis of the discovery and replication cohorts identified rs1545300 as the lead SNP at the KCND3 locus (OR 0.82 per minor T allele, p=7.7E-12), but did not reveal additional loci. Co-localization analyses indicate causal effects of KCND3 gene expression levels on ERP in both cardiac left ventricle and tibial artery. Conclusions. In this study we identified for the first time a genome-wide significant association of a genetic variant with ERP. Our findings of a locus in the KCND3 gene not only provide insights into the genetic determinants but also into the pathophysiological mechanism of ERP, discovering a promising candidate for functional studies. Funding. For detailed information per study, see Acknowledgments.
Alexander Teumer, Teresa Trenkwalder, Thorsten Kessler, Yalda Jamshidi, Marten E. van den Berg, Bernhard Kaess, Christopher P. Nelson, Rachel Bastiaenen, Marzia De Bortoli, Alessandra Rossini, Isabel Deisenhofer, Klaus Stark, Solmaz Assa, Peter S. Braund, Claudia Cabrera, Anna F. Dominiczak, Martin Gögele, Leanne M. Hall, M. Arfan Ikram, Maryam Kavousi, Karl J. Lackner, Christian Müller, Thomas Münzel, Matthias Nauck, Sandosh Padmanabhan, Norbert Pfeiffer, Tim D. Spector, Andre G. Uitterlinden, Niek Verweij, Uwe Völker, Helen R. Warren, Mobeen Zafar, Stephan B. Felix, Jan A. Kors, Harold Snieder, Patricia B. Munroe, Cristian Pattaro, Christian Fuchsberger, Georg Schmidt, Ilja M. Nolte, Heribert Schunkert, Peter Pramstaller, Philipp S. Wild, Pim van der Harst, Bruno H. Stricker, Renate B. Schnabel, Nilesh J. Samani, Christian Hengstenberg, Marcus Dörr, Elijah R. Behr, Wibke Reinhard
High levels of circulating miR-16 in the serum of multiple myeloma (MM) patients are independently associated with longer survival. Although the tumor suppressor function of intracellular miR-16 in cancer cells, including MM plasma cells (PCs), has been highly elucidated, its extracellular role in maintaining a non-supportive cancer microenvironment has not been fully explored. Here, we show that miR-16 can be actively secreted by MM cells through extracellular vesicles (EVs), and its extracellular and intracellular levels are directly correlated. We also show that EVs isolated from MM patients and from the conditioned media of MM-PCs can differentiate circulating monocytes to M2-tumor supportive macrophages (TAMs) and that the presence of higher levels of extracellular miR-16 counteracts this effect. In agreement with these observations, our data show that miR-16 directly targets the IKKα/β complex of the NF-kB canonical pathway, which is known to play a critical role in polarizing macrophages toward an M2 phenotype. By using a miR-15a-16-1 knockout mouse model, we also show that loss of the miR-16 cluster supports polarization to M2-macrophages. Finally, we demonstrate the therapeutic benefit of miR-16 overexpression in potentiating the anti-MM activity by a proteasome inhibitor in the presence of MM resident bone marrow TAM.
Jihane Khalife, Jayeeta Ghose, Marianna Martella, Domenico Viola, Alberto Rocci, Estelle Troadec, Cesar Terrazas, Abhay R. Satoskar, Emine Gulsen Gunes, Ada Dona, James F. Sanchez, P. Leif Bergsagel, Marta Chesi, Alex Pozhitkov, Steven Rosen, Guido Marcucci, Jonathan J. Keats, Craig C. Hofmeister, Amrita Krishnan, Enrico Caserta, Flavia Pichiorri
Anemia of β-thalassemias is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of β-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage as indicated by a reduction in membrane-associated free α–globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes and in HRI activation and elF2α phosphorylation. The improvement of β-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation, Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of β-thalassemia.
Alessandro Matte, Enrica Federti, Michael Winter, Annette Koerner, Anja Harmeier, Norman Mazer, Tomas Tomka, Maria Luisa Di Paolo, Luigia De Falco, Immacolata Andolfo, Elisabetta Beneduce, Achille Iolascon, Alejandra Macias-Garcia, Jane-Jane Chen, Anne Janin, Christophe Leboeuf, Francesco Turrini, Carlo Brugnara, Lucia De Franceschi
No posts were found with this tag.