Diarrhea is a major cause of global mortality, and outbreaks of secretory diarrhea such as cholera remain an important problem in the developing world. Current treatment of secretory diarrhea primarily involves supportive measures such as fluid replacement. The calcium-sensing receptor (CaSR) regulates multiple biological activities in response to changes in extracellular Ca+2. The FDA-approved drug cinacalcet is an allosteric activator of CaSR used for treatment of hyperparathyroidism. Here, we found by short-circuit current measurements in human colonic T84 cells that CaSR activation by cinacalcet reduced forskolin-induced Cl- secretion by greater than 80%. Cinacalcet also reduced Cl- secretion induced by cholera toxin, heat-stable E. coli enterotoxin, and vasoactive intestinal peptide (VIP). The cinacalcet effect primarily involved indirect inhibition of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion following activation of CaSR, and downstream phospholipase C and phosphodiesterases. In mice, cinacalcet reduced fluid accumulation by more than 60% in intestinal closed-loop models of cholera and Traveler’s diarrhea. The cinacalcet effect involved both inhibition of CFTR-mediated secretion and stimulation of sodium-hydrogen exchanger 3 (NHE3)-mediated absorption. These findings support the therapeutic utility of the safe and commonly used drug cinacalcet in CFTR-dependent secretory diarrheas including cholera, Traveler’s diarrhea and VIPoma.
Apurva A. Oak, Parth D. Chhetri, Amber Rivera, Alan S. Verkman, Onur Cil
Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contributes to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single surface markers, such as CD15, CD44, CD133, and alpha-6 integrin. It remains unknown how these single surface marker-defined GSC populations compare to each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost, and previously undetectable ones materialized. GSCs that highly expressed all four surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings.
Luciano Galdieri, Arijita Jash, Olga Malkova, Diane D. Mao, Patrick A. DeSouza, Yunli E. Chu, Amber Salter, Jian L. Campian, Kristen M. Naegle, Cameron W. Brennan, Hiroaki Wakimoto, Stephen T. Oh, Albert H. Kim, Milan G. Chheda
Antiretroviral therapies (ART) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which re-seed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T-cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time, and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T-cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.
Eva M. Stevenson, Adam R. Ward, Ronald Truong, Allison S. Thomas, Szu-Han Huang, Thomas R. Dilling, Sandra Terry, John K. Bui, Talia M. Mota, Ali Danesh, Guinevere Q. Lee, Andrea Gramatica, Pragya Khadka, Winiffer D. Conce Alberto, Rajesh T. Gandhi, Deborah K. McMahon, Christina M. Lalama, Ronald J. Bosch, Bernard J. Macatangay, Joshua C. Cyktor, Joseph J. Eron, John W. Mellors, R. Brad Jones
Osteosarcoma (OS) is an aggressive mesenchymal tumor for which no molecularly targeted therapies are available. We have previously identified TRAF2 and NCK-interacting protein kinase (TNIK) as an essential factor for the transactivation of Wnt signal target genes and shown that its inhibition leads to eradication of colorectal cancer stem cells. The involvement of Wnt signaling in the pathogenesis of OS has been implicated. The aim of the present study was to examine the potential of TNIK as a therapeutic target in OS. RNA interference or pharmacological inhibition of TNIK suppressed the proliferation of OS cells. Transcriptome analysis suggested that a small-molecule inhibitor of TNIK up-regulated the expression of genes involved in OS cell metabolism and down-regulated transcription factors essential for maintaining the stem cell phenotype. Metabolome analysis revealed that this TNIK inhibitor redirected the metabolic network from carbon flux towards lipid accumulation in OS cells. Using in vitro and in vivo OS models, we confirmed that TNIK inhibition abrogated the OS stem cell phenotype, simultaneously driving conversion of OS cells to adipocyte-like cells through induction of peroxisome proliferator-activated receptor-γ. In relation to potential therapeutic targeting in clinical practice, TNIK was confirmed to be in an active state in OS cell lines and clinical specimens. From these findings, we conclude that TNIK is applicable as a potential target for treatment of OS, affecting cell fate determination.
Toru Hirozane, Mari Masuda, Teppei Sugano, Tetsuya Sekita, Naoko Goto, Toru Aoyama, Takato Sakagami, Yuko Uno, Hideki Moriyama, Masaaki Sawa, Naofumi Asano, Masaya Nakamura, Morio Matsumoto, Robert Nakayama, Tadashi Kondo, Akira Kawai, Eisuke Kobayashi, Tesshi Yamada
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR is highly expressed in the proliferating phase of infantile hemangioma, but its expression decreases in the involuting phase, suggesting that NGBR may be involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrated that NGBR knockdown in hemangioma stem cells (HemSCs) attenuates growth factors-stimulated RAS activation and diminishes the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further showed that NGBR knockdown inhibits blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR serves as a RAS modulator in controlling the growth and differentiation of HemSCs.
Wenquan Hu, Zhong Liu, Valerie Salato, Paula E. North, Joyce Bischoff, Suresh N. Kumar, Zhi Fang, Sujith Rajan, M. Mahmood Hussain, Qing R. Miao
Hepatitis B virus (HBV)-specific CD8+ T cells fail to acquire effector functions after priming in the liver, but the molecular basis for the dysfunctionality is poorly understood. By comparing the gene expression profile of intrahepatically primed, dysfunctional HBV-specific CD8+ T cells with that of systemically primed, functional effector counterparts, we found that the expression of interferon-stimulated genes (ISGs) is selectively suppressed in the dysfunctional CD8+ T cells. The ISG suppression was associated with impaired phosphorylation of STAT1 in response to IFNα treatment. Importantly, a strong induction of type interferons (IFN-Is) in the liver facilitated the functional differentiation of intrahepatically primed HBV-specific CD8+ T cells in association with the restoration of ISGs expression in the T cells. These results suggest that intrahepatic priming suppresses IFN-I signaling in CD8+ T cells, which may contribute to the dysfunctionality. The data also suggest a therapeutic value of the robust induction of intrahepatic IFN-Is for the treatment of chronic HBV infection.
Keigo Kawashima, Masanori Isogawa, Masaya Onishi, Ian Baudi, Satoru Saito, Atsushi Nakajima, Takashi Fujita, Yasuhito Tanaka
The role of insulin receptor (IR) activated by hyperinsulinemia in obesity-induced kidney injury is not well understood. We hypothesized that activation of the kidney proximal tubule epithelial IR contributes to obesity-induced kidney injury. We administered normal fat diet (NFD) or high fat diet (HFD) to Control and kidney proximal tubule IR knock out (KPTIRKO) mice for 4 months. Renal cortical IR expression was decreased by 60% in male and female KPTIRKO mice. In KPTIRKO mice baseline serum glucose, serum creatinine, and urinary albumin to creatinine ratio (ACR) were similar to Controls. On HFD, weight gain and increase in serum cholesterol were similar in Control and KPTIRKO mice; blood glucose did not change. HFD increased the following parameters in the male Control mice: renal cortical contents of phosphorylated IR and Akt, matrix proteins, urinary ACR and kidney injury molecule-1 (KIM-1) to creatinine ratio, and systolic blood pressure. Renal cortical generation of hydrogen sulfide was reduced in HFD fed male Control mice. All of these parameters were ameliorated in male KPTIRKO mice. Interestingly, female mice were resistant to HFD-induced kidney injury in both genotypes. We conclude that HFD-induced kidney injury requires renal proximal tubule IR activation in male mice.
Hak Joo Lee, Meenalakshmi M. Mariappan, Luke Norton, Terry Bakewell, Denis Feliers, Sae Byeol Oh, Andrew Donati, Cherubina S. Rubannelsonkumar, Manjeri Venkatachalam, Stephen E. Harris, Isabelle Rubera, Michel Tauc, Goutam Ghosh Choudhury, C. Ronald Kahn, Kumar Sharma, Ralph A. DeFronzo, Balakuntalam S. Kasinath
Ginger is known to have anti-inflammatory and anti-oxidative effects, and has traditionally been used as an herbal supplement in the treatment of various chronic diseases. Here, we report anti-neutrophil properties of 6-gingerol, the most abundant bioactive compound of ginger root, in models of lupus and antiphospholipid syndrome (APS). Specifically, we demonstrate that 6-gingerol attenuates neutrophil extracellular trap (NET) release in response to lupus- and APS-relevant stimuli through a mechanism that at least partially dependent on inhibition of phosphodiesterases. At the same time, administration of 6-gingerol to mice reduces NET release in various models of lupus and APS, while also improving other disease-relevant endpoints such as autoantibody formation and large-vein thrombosis. In summary, this study is the first to demonstrate a protective role for ginger-derived compounds in the context of lupus, and importantly provides a potential mechanism for these effects via phosphodiesterase inhibition and attenuation of neutrophil hyperactivity.
Ramadan A. Ali, Alex A. Gandhi, Lipeng Dai, Julia K. Weiner, Shanea K. Estes, Srilakshmi Yalavarthi, Kelsey Gockman, Duxin Sun, Jason S. Knight
Impairment of GABAergic system has been reported in epilepsy, autism, ADHD and schizophrenia. We recently demonstrated that Ataxia Telangiectasia Mutated (ATM) shapes directly the development of GABAergic system. Here, we show for the first time how the abnormal expression of ATM impacts the pathological condition of autism. We exploit two different animal models of autism, the Mecp2y/- mouse model of Rett syndrome, and mice prenatally exposed to valproic acid, and found increased ATM levels. Accordingly, the treatment with the specific ATM kinase inhibitor KU55933 (KU) normalises molecular, functional and behavioural defects in these mouse models such as the i) delayed GABAergic development, ii) hippocampal hyper-excitability, iii) low cognitive performances, iv) social impairments. Mechanistically, we demonstrate that KU administration to wild type hippocampal neurons leads to i) higher Egr4 activity on Kcc2b promoter, ii) increased expression of Mecp2, iii) potentiated GABA-transmission. These results provide evidences and molecular substrates for the pharmacological development of ATM inhibition in autism spectrum disorders.
Lara Pizzamiglio, Elisa Focchi, Clara Maria Cambria, Luisa Ponzoni, Silvia Ferrara, Francesco Bifari, Genni Desiato, Nicoletta Landsberger, Luca Murru, Maria Passafaro, Mariaelvina Sala, MIchela Matteoli, Elisabetta Menna, Flavia Antonucci
TrkB agonist drugs are shown here to have a significant effect on the regeneration of afferent cochlear synapses after noise-induced synaptopathy. The effects were consistent with regeneration of cochlear synapses that we observed in vitro after synaptic loss due to kainic acid-induced glutamate toxicity and were elicited by administration of TrkB agonists, amitriptyline and 7,8- dihydroxyflavone, directly into the cochlea via the posterior semicircular canal 48 h after exposure to noise. Synaptic counts at the inner hair cell and wave 1 amplitudes in the ABR were partially restored 2 weeks after drug treatment. Effects of amitriptyline on wave 1 amplitude and afferent auditory synapse numbers in noise-exposed ears after systemic (as opposed to local) delivery were profound and long-lasting; synapses in the treated animals remained intact one year after the treatment. However, the effect of systemically delivered amitriptyline on synaptic rescue was dependent on dose and the time window of administration: it was only effective when given before noise exposure at the highest injected dose. The long-lasting effect and the efficacy of post-exposure treatment indicate a potential broad application for the treatment of synaptopathy, which often goes undetected until well after the original damaging exposure(s).
Katharine A. Fernandez, Takahisa Watabe, Mingjie Tong, Xiankai Meng, Kohsuke Tani, Sharon G. Kujawa, Albert S.B. Edge
No posts were found with this tag.