Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 204 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • Next →
Quantitative measurement of lymphatic function in mice by noninvasive near-infrared imaging of a peripheral vein
Steven T. Proulx, … , Jean-Christophe Leroux, Michael Detmar
Steven T. Proulx, … , Jean-Christophe Leroux, Michael Detmar
Published January 12, 2017
Citation Information: JCI Insight. 2017;2(1):e90861. https://doi.org/10.1172/jci.insight.90861.
View: Text | PDF

Quantitative measurement of lymphatic function in mice by noninvasive near-infrared imaging of a peripheral vein

  • Text
  • PDF
Abstract

Optical imaging methods have been developed to measure lymphatic function in skin; however, the lymphatic system of many organs is not accessible to this technology. Since lymphatic transport of macromolecules from any organ proceeds to the blood circulation, we aimed to develop a method that can measure lymphatic function by monitoring the fluorescence in a superficial vein of an interstitially injected tracer. We selected a 40-kDa PEGylated near-infrared dye conjugate, as it showed lymphatic system–specific uptake and extended circulation in blood. Lymphatic transport to blood from subcutaneous tissue required a transit time before signal enhancement was seen in blood followed by a steady rise in signal over time. Increased lymphatic transport was apparent in awake mice compared with those under continuous anesthesia. The methods were validated in K14-VEGFR-3-Fc and K14-VEGF-C transgenic mice with loss and gain of lymphatic function, respectively. Reduced lymphatic transport to blood was also found in aged mice. The technique was also able to measure lymphatic transport from the peritoneal cavity, a location not suitable for optical imaging. The method is a promising, simple approach for assessment of lymphatic function and for monitoring of therapeutic regimens in mouse models of disease and may have potential for clinical translation.

Authors

Steven T. Proulx, Qiaoli Ma, Diana Andina, Jean-Christophe Leroux, Michael Detmar

×

A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells
Hajime Uchida, … , Akihiro Umezawa, Hidenori Akutsu
Hajime Uchida, … , Akihiro Umezawa, Hidenori Akutsu
Published January 12, 2017
Citation Information: JCI Insight. 2017;2(1):e86492. https://doi.org/10.1172/jci.insight.86492.
View: Text | PDF

A xenogeneic-free system generating functional human gut organoids from pluripotent stem cells

  • Text
  • PDF
Abstract

Functional intestines are composed of cell types from all 3 primary germ layers and are generated through a highly orchestrated and serial developmental process. Directed differentiation of human pluripotent stem cells (hPSCs) has been shown to yield gut-specific cell types; however, these structures do not reproduce critical functional interactions between cell types of different germ layers. Here, we developed a simple protocol for the generation of mature functional intestinal organoids from hPSCs under xenogeneic-free conditions. The stem cell–derived gut organoids produced here were found to contain distinct types of intestinal cells, including enterocytes, goblet cells, Paneth cells, and enteroendocrine cells, that were derived from all 3 germ layers; moreover, they demonstrated intestinal functions, including peptide absorption, and showed innervated bowel movements in response to stimulation with histamine and anticholinergic drugs. Importantly, the gut organoids obtained using this xenogeneic-free system could be stably maintained in culture for prolonged periods and were successfully engrafted in vivo. Our xenogeneic-free approach for generating gut organoids from hPSCs provides a platform for studying human intestinal diseases and for pharmacological testing.

Authors

Hajime Uchida, Masakazu Machida, Takumi Miura, Tomoyuki Kawasaki, Takuya Okazaki, Kengo Sasaki, Seisuke Sakamoto, Noriaki Ohuchi, Mureo Kasahara, Akihiro Umezawa, Hidenori Akutsu

×

Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis
Ryan E. Feaver, … , Brian R. Wamhoff, Ajit Dash
Ryan E. Feaver, … , Brian R. Wamhoff, Ajit Dash
Published December 8, 2016
Citation Information: JCI Insight. 2016;1(20):e90954. https://doi.org/10.1172/jci.insight.90954.
View: Text | PDF

Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis

  • Text
  • PDF
Abstract

A barrier to drug development for nonalcoholic steatohepatitis (NASH) is the absence of translational preclinical human-relevant systems. An in vitro liver model was engineered to incorporate hepatic sinusoidal flow, transport, and lipotoxic stress risk factors (glucose, insulin, free fatty acids) with cocultured primary human hepatocytes, hepatic stellate cells (HSCs), and macrophages. Transcriptomic, lipidomic, and functional endpoints were evaluated and compared with clinical data from NASH patient biopsies. The lipotoxic milieu promoted hepatocyte lipid accumulation (4-fold increase, P < 0.01) and a lipidomics signature similar to NASH biopsies. Hepatocyte glucose output increased with decreased insulin sensitivity. These changes were accompanied by increased inflammatory analyte secretion (e.g., IL-6, IL-8, alanine aminotransferase). Fibrogenic activation markers increased with lipotoxic conditions, including secreted TGF-β (>5-fold increase, P < 0.05), extracellular matrix gene expression, and HSC activation. Significant pathway correlation existed between this in vitro model and human biopsies. Consistent with clinical trial data, 0.5 μM obeticholic acid in this model promoted a healthy lipidomic signature, reduced inflammatory and fibrotic secreted factors, but also increased ApoB secretion, suggesting a potential adverse effect on lipoprotein metabolism. Lipotoxic stress activates similar biological signatures observed in NASH patients in this system, which may be relevant for interrogating novel therapeutic approaches to treat NASH.

Authors

Ryan E. Feaver, Banumathi K. Cole, Mark J. Lawson, Stephen A. Hoang, Svetlana Marukian, Brett R. Blackman, Robert A. Figler, Arun J. Sanyal, Brian R. Wamhoff, Ajit Dash

×

Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders
Catherine DeBrosse, … , Ravinder Reddy, Shana E. McCormack
Catherine DeBrosse, … , Ravinder Reddy, Shana E. McCormack
Published November 3, 2016
Citation Information: JCI Insight. 2016;1(18):e88207. https://doi.org/10.1172/jci.insight.88207.
View: Text | PDF

Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders

  • Text
  • PDF
Abstract

Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group–specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group–specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (P = 0.026) prolonged postexercise τCr in the medial gastrocnemius muscle, suggestive of less OXPHOS capacity. Additionally, we observed that lower resting CrCEST was associated with prolonged τPCr, with a Pearson’s correlation coefficient of –0.42 (P = 0.046), consistent with previous hypotheses predicting that resting creatine levels may correlate with 31P magnetic resonance spectroscopy–based estimates of OXPHOS capacity. We conclude that CrCEST can noninvasively detect changes in muscle creatine content and OXPHOS capacity, with high anatomic resolution, in individuals with mitochondrial disorders.

Authors

Catherine DeBrosse, Ravi Prakash Reddy Nanga, Neil Wilson, Kevin D’Aquilla, Mark Elliott, Hari Hariharan, Felicia Yan, Kristin Wade, Sara Nguyen, Diana Worsley, Chevonne Parris-Skeete, Elizabeth McCormick, Rui Xiao, Zuela Zolkipli Cunningham, Lauren Fishbein, Katherine L. Nathanson, David R. Lynch, Virginia A. Stallings, Marc Yudkoff, Marni J. Falk, Ravinder Reddy, Shana E. McCormack

×

Quantum coherence spectroscopy to measure dietary fat retention in the liver
Lucas Lindeboom, … , Patrick Schrauwen, Vera B. Schrauwen-Hinderling
Lucas Lindeboom, … , Patrick Schrauwen, Vera B. Schrauwen-Hinderling
Published August 18, 2016
Citation Information: JCI Insight. 2016;1(13):e84671. https://doi.org/10.1172/jci.insight.84671.
View: Text | PDF

Quantum coherence spectroscopy to measure dietary fat retention in the liver

  • Text
  • PDF
Abstract

The prevalence of fatty liver reaches alarming proportions. Fatty liver increases the risk for insulin resistance, cardiovascular disease, and nonalcoholic steatohepatitis (NASH). Although extensively studied in a preclinical setting, the lack of noninvasive methodologies hampers our understanding of which pathways promote hepatic fat accumulation in humans. Dietary fat retention is one of the pathways that may lead to fatty liver. The low (1.1%) natural abundance (NA) of carbon-13 (13C) allows use of 13C-enriched lipids for in vivo MR studies. Successful implementation of such methodology, however, is challenging due to low sensitivity of 13C-magnetic resonance spectroscopy (13C-MRS). Here, we investigated the use of 1-dimensional gradient enhanced heteronuclear single quantum coherence (ge-HSQC) spectroscopy for the in vivo detection of hepatic 1H-[13C]-lipid signals after a single high-fat meal with 13C-labeled fatty acids in 5 lean and 6 obese subjects. Postprandial retention of orally administered 13C-labeled fatty acids was significant (P < 0.01). Approximately 1.5% of the tracer was retained in the liver after 6 hours, and retention was similar in both groups (P = 0.92). Thus, a substantial part of the liver fat can originate directly from storage of meal-derived fat. The ge-HSQC can be used to noninvasively reveal the contribution of dietary fat to the development of hepatic steatosis over time.

Authors

Lucas Lindeboom, Robin A. de Graaf, Christine I. Nabuurs, Petronella A. van Ewijk, Matthijs K.C. Hesselink, Joachim E. Wildberger, Patrick Schrauwen, Vera B. Schrauwen-Hinderling

×

A ferret model of COPD-related chronic bronchitis
S. Vamsee Raju, … , Mark T. Dransfield, Steven M. Rowe
S. Vamsee Raju, … , Mark T. Dransfield, Steven M. Rowe
Published September 22, 2016
Citation Information: JCI Insight. 2016;1(15):e87536. https://doi.org/10.1172/jci.insight.87536.
View: Text | PDF

A ferret model of COPD-related chronic bronchitis

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the US. The majority of COPD patients have symptoms of chronic bronchitis, which lacks specific therapies. A major impediment to therapeutic development has been the absence of animal models that recapitulate key clinical and pathologic features of human disease. Ferrets are well suited for the investigation of the significance of respiratory diseases, given prior data indicating similarities to human airway physiology and submucosal gland distribution. Here, we exposed ferrets to chronic cigarette smoke and found them to approximate complex clinical features of human COPD. Unlike mice, which develop solely emphysema, smoke-exposed ferrets exhibited markedly higher numbers of early-morning spontaneous coughs and sporadic infectious exacerbations as well as a higher level of airway obstruction accompanied by goblet cell metaplasia/hyperplasia and increased mucus expression in small airways, indicative of chronic bronchitis and bronchiolitis. Overall, we demonstrate the first COPD animal model exhibiting clinical and pathologic features of chronic bronchitis to our knowledge, providing a key advance that will greatly facilitate the preclinical development of novel treatments for this disease.

Authors

S. Vamsee Raju, Hyunki Kim, Stephen A. Byzek, Li Ping Tang, John E. Trombley, Patricia Jackson, Lawrence Rasmussen, J. Michael Wells, Emily Falk Libby, Erik Dohm, Lindy Winter, Sharon L. Samuel, Kurt R. Zinn, J. Edwin Blalock, Trenton R. Schoeb, Mark T. Dransfield, Steven M. Rowe

×

Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis
Ram P. Naikawadi, … , Mark R. Looney, Paul J. Wolters
Ram P. Naikawadi, … , Mark R. Looney, Paul J. Wolters
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e86704. https://doi.org/10.1172/jci.insight.86704.
View: Text | PDF

Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis

  • Text
  • PDF
Abstract

Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction.

Authors

Ram P. Naikawadi, Supparerk Disayabutr, Benat Mallavia, Matthew L. Donne, Gary Green, Janet L. La, Jason R. Rock, Mark R. Looney, Paul J. Wolters

×

A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood
Liudmila L. Mazaleuskaya, … , Emanuela Ricciotti, Garret A. FitzGerald
Liudmila L. Mazaleuskaya, … , Emanuela Ricciotti, Garret A. FitzGerald
Published August 4, 2016
Citation Information: JCI Insight. 2016;1(12):e87031. https://doi.org/10.1172/jci.insight.87031.
View: Text | PDF

A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood

  • Text
  • PDF
Abstract

Current methods of drug screening in human blood focus on the immediate products of the affected pathway and mostly rely on approaches that lack sensitivity and the capacity for multiplex analysis. We have developed a sensitive and selective method based on ultra-performance liquid chromatography–tandem mass spectrometry to scan the effect of drugs on the bioactive eicosanoid lipidome in vitro and ex vivo. Using small sample sizes, we can reproducibly measure a broad spectrum of eicosanoids in human blood and capture drug-induced substrate rediversion and unexpected shifts in product formation. Microsomal prostaglandin E synthase-1 (mPGES-1) is an antiinflammatory drug target alternative to COX-1/-2. Contrasting effects of targeting mPGES-1 versus COX-1/-2, due to differential substrate shifts across the lipidome, were observed and can be used to rationalize and evaluate drug combinations. Finally, the in vitro results were extrapolated to ex vivo studies by administration of the COX-2 inhibitor, celecoxib, to volunteers, illustrating how this approach can be used to integrate preclinical and clinical studies during drug development.

Authors

Liudmila L. Mazaleuskaya, John A. Lawson, Xuanwen Li, Gregory Grant, Clementina Mesaros, Tilo Grosser, Ian A. Blair, Emanuela Ricciotti, Garret A. FitzGerald

×

An imaging agent to detect androgen receptor and its active splice variants in prostate cancer
Yusuke Imamura, … , Raymond J. Andersen, Marianne D. Sadar
Yusuke Imamura, … , Raymond J. Andersen, Marianne D. Sadar
Published July 21, 2016
Citation Information: JCI Insight. 2016;1(11):e87850. https://doi.org/10.1172/jci.insight.87850.
View: Text | PDF

An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

  • Text
  • PDF
Abstract

Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC.

Authors

Yusuke Imamura, Amy H. Tien, Jinhe Pan, Jacky K. Leung, Carmen A. Banuelos, Kunzhong Jian, Jun Wang, Nasrin R. Mawji, Javier Garcia Fernandez, Kuo-Shyan Lin, Raymond J. Andersen, Marianne D. Sadar

×

Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+T cell recognition
Kirsteen M. Tullett, … , Mireille H. Lahoud, Kristen J. Radford
Kirsteen M. Tullett, … , Mireille H. Lahoud, Kristen J. Radford
Published May 19, 2016
Citation Information: JCI Insight. 2016;1(7):e87102. https://doi.org/10.1172/jci.insight.87102.
View: Text | PDF

Targeting CLEC9A delivers antigen to human CD141+ DC for CD4+ and CD8+T cell recognition

  • Text
  • PDF
Abstract

DC-based vaccines that initiate T cell responses are well tolerated and have demonstrated efficacy for tumor immunotherapy, with the potential to be combined with other therapies. Targeting vaccine antigens (Ag) directly to the DCs in vivo is more effective than cell-based therapies in mouse models and is therefore a promising strategy to translate to humans. The human CD141+ DCs are considered the most clinically relevant for initiating CD8+ T cell responses critical for killing tumors or infected cells, and they specifically express the C-type lectin-like receptor CLEC9A that facilitates presentation of Ag by these DCs. We have therefore developed a human chimeric Ab that specifically targets CLEC9A on CD141+ DCs in vitro and in vivo. These human chimeric Abs are highly effective at delivering Ag to DCs for recognition by both CD4+ and CD8+ T cells. Given the importance of these cellular responses for antitumor or antiviral immunity, and the superior specificity of anti-CLEC9A Abs for this DC subset, this approach warrants further development for vaccines.

Authors

Kirsteen M. Tullett, Ingrid M. Leal Rojas, Yoshihito Minoda, Peck S. Tan, Jian-Guo Zhang, Corey Smith, Rajiv Khanna, Ken Shortman, Irina Caminschi, Mireille H. Lahoud, Kristen J. Radford

×
  • ← Previous
  • 1
  • 2
  • …
  • 19
  • 20
  • 21
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts