Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
Fully automated, deep learning segmentation of oxygen-induced retinopathy images
Sa Xiao, … , Martin Friedlander, Aaron Y. Lee
Sa Xiao, … , Martin Friedlander, Aaron Y. Lee
Published December 21, 2017
Citation Information: JCI Insight. 2017;2(24):e97585. https://doi.org/10.1172/jci.insight.97585.
View: Text | PDF
Resource and Technical Advance Angiogenesis Ophthalmology

Fully automated, deep learning segmentation of oxygen-induced retinopathy images

  • Text
  • PDF
Abstract

Oxygen-induced retinopathy (OIR) is a widely used model to study ischemia-driven neovascularization (NV) in the retina and to serve in proof-of-concept studies in evaluating antiangiogenic drugs for ocular, as well as nonocular, diseases. The primary parameters that are analyzed in this mouse model include the percentage of retina with vaso-obliteration (VO) and NV areas. However, quantification of these two key variables comes with a great challenge due to the requirement of human experts to read the images. Human readers are costly, time-consuming, and subject to bias. Using recent advances in machine learning and computer vision, we trained deep learning neural networks using over a thousand segmentations to fully automate segmentation in OIR images. While determining the percentage area of VO, our algorithm achieved a similar range of correlation coefficients to that of expert inter-human correlation coefficients. In addition, our algorithm achieved a higher range of correlation coefficients compared with inter-expert correlation coefficients for quantification of the percentage area of neovascular tufts. In summary, we have created an open-source, fully automated pipeline for the quantification of key values of OIR images using deep learning neural networks.

Authors

Sa Xiao, Felicitas Bucher, Yue Wu, Ariel Rokem, Cecilia S. Lee, Kyle V. Marra, Regis Fallon, Sophia Diaz-Aguilar, Edith Aguilar, Martin Friedlander, Aaron Y. Lee

×

Figure 1

Overview of the fully automated analysis pipeline for oxygen-induced retinopathy images.

Options: View larger image (or click on image) Download as PowerPoint
Overview of the fully automated analysis pipeline for oxygen-induced ret...
The input image is fed through 3 separate fully automated methods: Segmentation of the vaso-obliteration region using deep learning, segmentation of the neovascular complexes using deep learning, and segmentation of the whole retina. These are combined to calculate quantitative ratios of the percentage of vaso-obliteration and percentage of neovascular complexes.

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts