Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model
Daniela Zwolanek, … , Thomas Rülicke, Reinhold G. Erben
Daniela Zwolanek, … , Thomas Rülicke, Reinhold G. Erben
Published October 19, 2017
Citation Information: JCI Insight. 2017;2(20):e87322. https://doi.org/10.1172/jci.insight.87322.
View: Text | PDF
Resource and Technical Advance Stem cells Transplantation

Tracking mesenchymal stem cell contributions to regeneration in an immunocompetent cartilage regeneration model

  • Text
  • PDF
Abstract

It is currently controversially discussed whether mesenchymal stem cells (MSC) facilitate cartilage regeneration in vivo by a progenitor- or a nonprogenitor-mediated mechanism. Here, we describe a potentially novel unbiased in vivo cell tracking system based on transgenic donor and corresponding immunocompetent marker–tolerant recipient mouse and rat lines in inbred genetic backgrounds. Tolerance of recipients was achieved by transgenic expression of an immunologically neutral but physicochemically distinguishable variant of the marker human placental alkaline phosphatase (ALPP). In this dual transgenic system, donor lines ubiquitously express WT, heat-resistant ALPP protein, whereas recipient lines express a heat-labile ALPP mutant (ALPPE451G) resulting from a single amino acid substitution. Tolerance of recipient lines to ALPP-expressing cells and tissues was verified by skin transplantation. Using this model, we show that intraarticularly injected MSC contribute to regeneration of articular cartilage in full-thickness cartilage defects mainly via a nonprogenitor-mediated mechanism.

Authors

Daniela Zwolanek, María Satué, Verena Proell, José R. Godoy, Kathrin I. Odörfer, Magdalena Flicker, Sigrid C. Hoffmann, Thomas Rülicke, Reinhold G. Erben

×

Full Text PDF

Download PDF (3.39 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts