Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Virology

  • 40 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • Next →
High-dimensional CyTOF analysis of dengue virus–infected human DCs reveals distinct viral signatures
Rebecca E. Hamlin, … , Miriam Merad, Ana Fernandez-Sesma
Rebecca E. Hamlin, … , Miriam Merad, Ana Fernandez-Sesma
Published July 6, 2017
Citation Information: JCI Insight. 2017;2(13):e92424. https://doi.org/10.1172/jci.insight.92424.
View: Text | PDF

High-dimensional CyTOF analysis of dengue virus–infected human DCs reveals distinct viral signatures

  • Text
  • PDF
Abstract

Dengue virus (DENV) is the most prevalent mosquito-borne virus causing human disease. Of the 4 DENV serotypes, epidemiological data suggest that DENV-2 secondary infections are associated with more severe disease than DENV-4 infections. Mass cytometry by time-of-flight (CyTOF) was used to dissect immune changes induced by DENV-2 and DENV-4 in human DCs, the initial targets of primary infections that likely affect infection outcomes. Strikingly, DENV-4 replication peaked earlier and promoted stronger innate immune responses, with increased expression of DC activation and migration markers and increased cytokine production, compared with DENV-2. In addition, infected DCs produced higher levels of inflammatory cytokines compared with bystander DCs, which mainly produced IFN-induced cytokines. These high-dimensional analyses during DENV-2 and DENV-4 infections revealed distinct viral signatures marked by different replication strategies and antiviral innate immune induction in DCs, which may result in different viral fitness, transmission, and pathogenesis.

Authors

Rebecca E. Hamlin, Adeeb Rahman, Theodore R. Pak, Kevin Maringer, Ignacio Mena, Dabeiba Bernal-Rubio, Uma Potla, Ana M. Maestre, Anthony C. Fredericks, El-ad D. Amir, Andrew Kasarskis, Irene Ramos, Miriam Merad, Ana Fernandez-Sesma

×

Clinical, virological, and biological parameters associated with outcomes of Ebola virus infection in Macenta, Guinea
Marie-Astrid Vernet, … , François L’Hériteau, Sylvain Baize
Marie-Astrid Vernet, … , François L’Hériteau, Sylvain Baize
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e88864. https://doi.org/10.1172/jci.insight.88864.
View: Text | PDF

Clinical, virological, and biological parameters associated with outcomes of Ebola virus infection in Macenta, Guinea

  • Text
  • PDF
Abstract

BACKGROUND. The pathogenesis of Ebola virus (EBOV) disease (EVD) is poorly characterized. The establishment of well-equipped diagnostic laboratories close to Ebola treatment centers (ETCs) has made it possible to obtain relevant virological and biological data during the course of EVD and to assess their association with the clinical course and different outcomes of the disease.

METHODS. We were responsible for diagnosing EBOV infection in patients admitted to two ETCs in forested areas of Guinea. The pattern of clinical signs was recorded, and an etiological diagnosis was established by RT-PCR for EBOV infection or a rapid test for malaria and typhoid fever. Biochemical analyses were also performed.

RESULTS. We handled samples from 168 patients between November 29, 2014, and January 31, 2015; 97 patients were found to be infected with EBOV, with Plasmodium falciparum coinfection in 18%. Overall mortality for EVD cases was 58%, rising to 86% if P. falciparum was also present. Viral load was higher in fatal cases of EVD than in survivors, and fatal cases were associated with higher aspartate aminotransferase (AST) and alanine aminotransferase (ALT), C-reactive protein (CRP), and IL-6 levels. Furthermore, regardless of outcome, EVD was characterized by higher creatine kinase (CPK), amylase, and creatinine levels than in febrile patients without EVD, with higher blood urea nitrogen (BUN) levels in fatal cases of EVD only.

CONCLUSION. These findings suggest that a high viral load at admission is a marker of poor EVD prognosis. In addition, high AST, ALT, CRP, and IL-6 levels are associated with a fatal outcome of EVD. Damage to the liver and other tissues, with massive rhabdomyolysis and, probably, acute pancreatitis, is associated with EVD and correlated with disease severity. Finally, biochemical analyses provide substantial added value at ETCs, making it possible to improve supportive rehydration and symptomatic care for patients.

FUNDING. The French Ministry of Foreign Affairs, the Agence Française de Développement, and Institut Pasteur.

Authors

Marie-Astrid Vernet, Stéphanie Reynard, Alexandra Fizet, Justine Schaeffer, Delphine Pannetier, Jeremie Guedj, Max Rives, Nadia Georges, Nathalie Garcia-Bonnet, Aboubacar I. Sylla, Péma Grovogui, Jean-Yves Kerherve, Christophe Savio, Sylvie Savio-Coste, Marie-Laure de Séverac, Philippe Zloczewski, Sandrine Linares, Souley Harouna, Bing M’Lebing Abdoul, Frederic Petitjean, Nenefing Samake, Susan Shepherd, Moumouni Kinda, Fara Roger Koundouno, Ludovic Joxe, Mathieu Mateo, Patrick Lecine, Audrey Page, Tang Maleki Tchamdja, Matthieu Schoenhals, Solenne Barbe, Bernard Simon, Tuan Tran-Minh, Christophe Longuet, François L’Hériteau, Sylvain Baize

×

Flow virometric sorting and analysis of HIV quasispecies from plasma
Thomas Musich, … , Robert Yarchoan, Marjorie Robert-Guroff
Thomas Musich, … , Robert Yarchoan, Marjorie Robert-Guroff
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e90626. https://doi.org/10.1172/jci.insight.90626.
View: Text | PDF

Flow virometric sorting and analysis of HIV quasispecies from plasma

  • Text
  • PDF
Abstract

Flow cytometry is utilized extensively for cellular analysis, but technical limitations have prevented its routine application for characterizing virus. The recent introduction of nanoscale fluorescence-activated cytometric cell sorting now allows analysis of individual virions. Here, we demonstrate staining and sorting of infectious HIV. Fluorescent antibodies specific for cellular molecules found on budding virions were used to label CCR5-tropic Bal HIV and CXCR4-tropic NL4.3 HIV Env-expressing pseudovirions made in THP-1 cells (monocyte/macrophage) and H9 cells (T cells), respectively. Using a flow cytometer, we resolved the stained virus beyond isotype staining and demonstrated purity and infectivity of sorted virus populations on cells with the appropriate coreceptors. We subsequently sorted infectious simian/human immunodeficiency virus from archived plasma. Recovery was approximately 0.5%, but virus present in plasma was already bound to viral-specific IgG generated in vivo, likely contributing to the low yield. Importantly, using two broadly neutralizing HIV antibodies, PG9 and VRC01, we also sorted virus from archived human plasma and analyzed the sorted populations genetically and by proteomics, identifying the quasispecies present. The ability to sort infectious HIV from clinically relevant samples provides material for detailed molecular, genetic, and proteomic analyses applicable to future design of vaccine antigens and potential development of personalized treatment regimens.

Authors

Thomas Musich, Jennifer C. Jones, Brandon F. Keele, Lisa M. Miller Jenkins, Thorsten Demberg, Thomas S. Uldrick, Robert Yarchoan, Marjorie Robert-Guroff

×

HLA-DQ β1 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells
Qingxue Li, … , Amitava Roy, Jeffrey I. Cohen
Qingxue Li, … , Amitava Roy, Jeffrey I. Cohen
Published February 23, 2017
Citation Information: JCI Insight. 2017;2(4):e85687. https://doi.org/10.1172/jci.insight.85687.
View: Text | PDF

HLA-DQ β1 alleles associated with Epstein-Barr virus (EBV) infectivity and EBV gp42 binding to cells

  • Text
  • PDF
Abstract

Epstein-Barr virus (EBV) infects B cells and ~95% of adults are infected. EBV glycoprotein gp42 is essential for entry of virus into B cells. EBV gp42 binds to the β1 chain of HLA-DQ, -DR, and -DP on B cells, and uses these molecules for infection. To investigate if certain HLA-DQ alleles are associated with EBV seronegativity, we recruited ~3,300 healthy adult blood donors, identified 106 EBV-seronegative individuals, and randomly selected a control group of EBV-seropositive donors from the donor pool. A larger than expected proportion of EBV-seronegative subjects were HLA-DQ β1 *04/*05 and *06/*06, and to a lesser extent, *02/*03, compared with the control group, while a larger than expected portion of EBV-seropositive persons were HLA-DQ β1 *02/*02. We examined the ability of EBV gp42 to bind to different HLA-DQ molecules using human and mouse cells stably expressing these alleles. EBV gp42 bound less effectively to cells expressing HLA-DQ β1 *04/*05, *06/*06, or *03/*03 than to cells expressing HLA-DQ β1 *02/*02. These data are consistent with our observations of increased EBV seronegativity with DQ β1 *04/*05 or *06/*06 alleles. These findings emphasize the importance of a single genetic locus (HLA-DQ β1) to influence infectivity with EBV.

Authors

Qingxue Li, Wei Bu, Erin Gabriel, Fiona Aguilar, Yo Hoshino, Hiroko Miyadera, Christoph Hess, Ronald L. Hornung, Amitava Roy, Jeffrey I. Cohen

×

Quantitative evaluation of the antiretroviral efficacy of dolutegravir
Sarah B. Laskey, Robert F. Siliciano
Sarah B. Laskey, Robert F. Siliciano
Published November 17, 2016
Citation Information: JCI Insight. 2016;1(19):e90033. https://doi.org/10.1172/jci.insight.90033.
View: Text | PDF

Quantitative evaluation of the antiretroviral efficacy of dolutegravir

  • Text
  • PDF
Abstract

The second-generation HIV-1 integrase strand transfer inhibitor (InSTI) dolutegravir (DTG) has had a major impact on the treatment of HIV-1 infection. Here we describe important but previously undetermined pharmacodynamic parameters for DTG. We show that the dose-response curve slope, which indicates cooperativity and is a major determinant of antiviral activity, is higher for DTG than for first-generation InSTIs. This steepness does not reflect inhibition of multiple steps in the HIV-1 life cycle, as is the case for allosteric integrase inhibitors and HIV-1 protease inhibitors. We also show that degree of independence, a metric of interaction favorability between antiretroviral drugs, is high for DTG and nucleoside reverse transcriptase inhibitors. Finally, we demonstrate poor selective advantage for HIV-1 bearing InSTI resistance mutations. Selective advantage, which incorporates both the magnitude of resistance conferred by a mutation and its fitness cost, explains the high genetic barrier to DTG resistance. Together, these parameters provide an explanation for the remarkable clinical success of DTG.

Authors

Sarah B. Laskey, Robert F. Siliciano

×

Ly6Chi monocytes regulate T cell responses in viral hepatitis
Jiangao Zhu, … , Songfu Jiang, Yiping Yang
Jiangao Zhu, … , Songfu Jiang, Yiping Yang
Published October 20, 2016
Citation Information: JCI Insight. 2016;1(17):e89880. https://doi.org/10.1172/jci.insight.89880.
View: Text | PDF

Ly6Chi monocytes regulate T cell responses in viral hepatitis

  • Text
  • PDF
Abstract

Viral hepatitis remains a global health challenge despite recent progress in the development of more effective therapies. Although virus-specific CD8+ and CD4+ T cell responses are essential for viral clearance, it remains largely unknown what regulates T cell–mediated viral clearance. Thus, a better understanding of the regulation of anti-viral T cell immunity would be critical for the design of more effective therapies for viral hepatitis. Using a model of adenovirus-induced hepatitis, here we showed that adenoviral infection induced recruitment of Ly6Chi monocytes to the liver in a CCR2-dependent manner. These recruited Ly6Chi monocytes suppressed CD8+ and CD4+ T cell responses to adenoviral infection, leading to a delay in viral clearance. In vivo depletion of Ly6Chi monocytes markedly enhanced anti-viral T cell responses and promoted viral clearance. Mechanistically, we showed that induction of iNOS and the production of NO by Ly6Chi monocytes are critical for the suppression of T cell responses. In addition, a contact-dependent mechanism mediated by PD-1 and PD-L1 interaction is also required for T cell suppression by Ly6Chi monocytes. These findings suggest a critical role for Ly6Chi monocytes in the regulation of T cell immunity in viral hepatitis and may provide new insights into development of more effective therapies for treating viral hepatitis based on targeting the immunosuppressing monocytes.

Authors

Jiangao Zhu, Huiyao Chen, Xiaopei Huang, Songfu Jiang, Yiping Yang

×

Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain
Giridhar Murlidharan, … , Juan Song, Aravind Asokan
Giridhar Murlidharan, … , Juan Song, Aravind Asokan
Published September 8, 2016
Citation Information: JCI Insight. 2016;1(14):e88034. https://doi.org/10.1172/jci.insight.88034.
View: Text | PDF

Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain

  • Text
  • PDF
Abstract

Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4–/– mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4–/– mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.

Authors

Giridhar Murlidharan, Andrew Crowther, Rebecca A. Reardon, Juan Song, Aravind Asokan

×

Zika virus productively infects primary human placenta-specific macrophages
Kellie Ann Jurado, … , Seth Guller, Erol Fikrig
Kellie Ann Jurado, … , Seth Guller, Erol Fikrig
Published August 18, 2016
Citation Information: JCI Insight. 2016;1(13):e88461. https://doi.org/10.1172/jci.insight.88461.
View: Text | PDF

Zika virus productively infects primary human placenta-specific macrophages

  • Text
  • PDF
Abstract

The strong association of Zika virus infection with congenital defects has led to questions of how a flavivirus is capable of crossing the placental barrier to reach the fetal brain. Here, we demonstrate permissive Zika virus infection of primary human placental macrophages, commonly referred to as Hofbauer cells, and placental villous fibroblasts. We also demonstrate Zika virus infection of Hofbauer cells within the context of the tissue ex vivo using term placental villous explants. In addition to amplifying infectious virus within a usually inaccessible area, the putative migratory activities of Hofbauer cells may aid in dissemination of Zika virus to the fetal brain. Understanding the susceptibility of placenta-specific cell types will aid future work around and understanding of Zika virus–associated pregnancy complications.

Authors

Kellie Ann Jurado, Michael K. Simoni, Zhonghua Tang, Ryuta Uraki, Jesse Hwang, Sarah Householder, Mingjie Wu, Brett D. Lindenbach, Vikki M. Abrahams, Seth Guller, Erol Fikrig

×

HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates
Christopher D. Petro, … , William R. Jacobs Jr, Betsy C. Herold
Christopher D. Petro, … , William R. Jacobs Jr, Betsy C. Herold
Published August 4, 2016
Citation Information: JCI Insight. 2016;1(12):e88529. https://doi.org/10.1172/jci.insight.88529.
View: Text | PDF

HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates

  • Text
  • PDF
Abstract

A single-cycle herpes simplex virus (HSV) deleted in glycoprotein D (ΔgD-2) elicited high titer HSV-specific antibodies (Abs) that (i) were rapidly transported into the vaginal mucosa; (ii) elicited antibody-dependent cell-mediated cytotoxicity but little neutralization; (iii) provided complete protection against lethal intravaginal challenge; and (iv) prevented establishment of latency in mice. However, clinical isolates may differ antigenically and impact vaccine efficacy. To determine the breadth and further define mechanisms of protection of this vaccine candidate, we tested ΔgD-2 against a panel of clinical isolates in a murine skin challenge model. The isolates were genetically diverse, as evidenced by genomic sequencing and in vivo virulence. Prime and boost immunization (s.c.) with live but not heat- or UV-inactivated ΔgD-2 completely protected mice from challenge with the most virulent HSV-1 and HSV-2 isolates. Furthermore, mice were completely protected against 100 times the lethal dose that typically kills 90% of animals (LD90) of a South African isolate (SD90), and no latent virus was detected in dorsal root ganglia. Immunization was associated with rapid recruitment of HSV-specific FcγRIII- and FcγRIV-activating IgG2 Abs into the skin, resolution of local cytokine and cellular inflammatory responses, and viral clearance by day 5 after challenge. Rapid clearance and the absence of latent virus suggest that ΔgD-2 elicits sterilizing immunity.

Authors

Christopher D. Petro, Brian Weinrick, Nazanin Khajoueinejad, Clare Burn, Rani Sellers, William R. Jacobs Jr, Betsy C. Herold

×

Survey for human polyomaviruses in cancer
Tuna Toptan, … , Patrick S. Moore, Yuan Chang
Tuna Toptan, … , Patrick S. Moore, Yuan Chang
Published February 25, 2016
Citation Information: JCI Insight. 2016;1(2):e85562. https://doi.org/10.1172/jci.insight.85562.
View: Text | PDF

Survey for human polyomaviruses in cancer

  • Text
  • PDF
Abstract

Over the past 8 years, the discovery of 11 new human polyomaviruses (HPyVs) has revived interest in this DNA tumor virus family. Although HPyV infection is widespread and largely asymptomatic, one of these HPyVs, Merkel cell polyomavirus (MCV), is a bona fide human tumor virus. JC virus (JCV), BK virus, HPyV7, and trichodysplasia-spinulosa virus (TSV) can cause nonneoplastic diseases in the setting of immunosuppression. Few specific reagents are available to study the biology of the newly discovered HPyVs. We developed a pan-HPyV-screening method using a cocktail of 3 antibodies that, when combined, recognize T antigen proteins of all HPyVs. We validated detection characteristics of the antibody cocktail by immunoblotting and immunohistochemistry and screened 1,184 cases, including well-defined diseases and tumor tissue microarrays. This assay robustly detected MCV, TSV, JCV, and HPyV7 in etiologically related diseases. We further identified WU polyomavirus in a case of chronic lymphocytic lymphoma-associated bronchitis. Except for scattered, incidentally infected cells in 5% of lung squamous cell carcinomas and colon adenocarcinomas, a broad panel of tumor tissues was largely negative for infection by any HPyV. This method eliminates known HPyVs as suspected causes of cancers investigated in this study. Pan-HPyV survey can be applied to identify diseases associated with recently discovered polyomaviruses.

Authors

Tuna Toptan, Samuel A. Yousem, Jonhan Ho, Yuki Matsushima, Laura P. Stabile, Maria-Teresa Fernández-Figueras, Rohit Bhargava, Akihide Ryo, Patrick S. Moore, Yuan Chang

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts