Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for numerous outbreaks. Chikungunya can cause debilitating acute and chronic disease. Thus, the development of a safe and effective CHIKV vaccine is an urgent global health priority.This study evaluated the effectiveness of the live-attenuated CHIKV vaccine VLA1553 against WT CHIKV infection by using passive transfer of sera from vaccinated volunteers to non-human primates (NHP) subsequently exposed to WT CHIKV and established a serological surrogate of protection. We demonstrated that human VLA1553 sera transferred to NHPs conferred complete protection from CHIKV viremia and fever after challenge with homologous WT CHIKV. In addition, serum transfer protected animals from other CHIKV associated clinical symptoms and from CHIKV persistence in tissue. Based on this passive transfer study, a 50% micro plaque reduction neutralization test titer of ≥150 was determined as a surrogate of protection which was supported by analysis of samples from a sero-epidemiological study.In conclusion, considering the unfeasibility of an efficacy trial due to the unpredictability and explosive, rapidly moving nature of chikungunya outbreaks, the definition of a surrogate of protection for VLA1553 is an important step towards vaccine licensure to reduce the medical burden caused by chikungunya.
Pierre Roques, Andrea Fritzer, Nathalie Dereuddre-Bosquet, Nina Wressnigg, Romana Hochreiter, Laetitia Bossevot, Quentin Pascal, Fabienne Guehenneux, Annegret Bitzer, Irena Corbic Ramljak, Roger Le Grand, Urban Lundberg, Andreas Meinke
In situ vaccination has demonstrated the feasibility of priming local immunity for systemic antitumor responses. Although direct intratumoral delivery of adjuvant is the mainstay, tumor-draining lymph nodes (TDLNs) also play essential roles in antitumor immunity. We report that directing an adjuvant to both tumors and TDLNs during in situ vaccination can induce robust antitumor responses. Conventional intratumoral dosing leads to tumor-limited delivery of agents; however, delivery to both tumors and TDLNs can be ensured through a micellar formation. The peritumoral delivery of micellar MEDI9197 (mcMEDI), a toll-like receptor 7/8 agonist, induced significantly stronger innate and adaptive immune responses than those on conventional dosing. Optimal dosing was crucial because excessive or insufficient accumulation of the adjuvant in the TDLNs compromised therapeutic efficacy. The combination of local mcMEDI therapy significantly improved the efficacy of systemic anti-programmed death receptor-1 therapy. These data suggest that rerouting adjuvants to tumors and TDLNs can augment the therapeutic efficacy of in situ vaccination.
Moonkyoung Jeong, Heegon Kim, Junyong Yoon, Dong-Hyun Kim, Ji-Ho Park
We have previously demonstrated that active immunization with the apolipoprotein B-100 (ApoB-100) peptide P210 reduces experimental atherosclerosis. To advance this immunization strategy to future clinical testing, we explored the possibility of delivering P210 as an antigen using nanoparticles, given this approach has now been used clinically. To that end, we first charactered the responses of T cells to P210 using PBMCs from human subjects with atherosclerotic cardiovascular disease (ASCVD). We then investigated the use of P210 in self-assembling peptide amphiphile micelles (P210-PAM) as a vaccine formulation to reduce atherosclerosis in ApoE-/- mice and its potential mechanisms of action. We also generated and characterized a humanized mouse model with chimeric HLA-A*02:01/Kb in ApoE-/- background to test the efficacy of P210-PAM immunization as a bridge for future clinical testing. P210 provoked T cell activation and memory response in PBMCs of human subjects with ASCVD. Dendritic cell uptake of P210-PAM and its co-staining with MHC-I molecules supported its use as a vaccine formulation. In ApoE-/- mice, immunization with P210-PAM dampened P210-specific CD4+ T cell proliferative response and CD8+ T cell cytolytic response, modulated macrophage phenotype, and significantly reduced aortic atherosclerosis. Potential clinical relevance of P210-PAM immunization was demonstrated by reduced atherosclerosis in the humanized ApoE-/- mouse model expressing chimeric HLA-A*02:01/Kb. Taken together, our data supports the experimental and translational use of P210-PAM as a potential vaccine candidate against human ASCVD.
Kuang-Yuh Chyu, Xiaoning Zhao, Jianchang Zhou, Paul C. Dimayuga, Nicole W.M. Lio, Bojan Cercek, Noah T. Trac, Eun Ji Chung, Prediman K. Shah
Transplant recipients exhibit an impaired protective immunity after SARS-CoV-2 vaccination, potentially caused by mycophenolate (MPA) immunosuppression. Recent data from autoimmune patients suggest that temporary MPA hold might significantly improve booster vaccination outcomes. We applied a fourth dose of SARS-CoV-2 vaccine to 29 kidney transplant recipients during temporary (5 weeks) MPA (n=28)/azathioprine (n=1) hold, who had not mounted a humoral immune-response to previous vaccinations. Seroconversion until day 32 after vaccination was observed in 76% of patients, associated with acquisition of virus neutralizing capacity. Interestingly, 21/25 (84%) CNI-treated patients responded, but only 1/4 Belatacept-treated patients. In line with humoral responses, counts and relative frequencies of spike receptor binding domain (RBD) specific B cells were significantly increased on day 7 after vaccination, with an increase in RBD specific CD27++CD38+ plasmablasts. Whereas overall proportions of spike-reactive CD4+ T cells remained unaltered after the fourth dose, frequencies were positively correlated with specific IgG levels. Importantly, antigen-specific proliferating Ki67+ and in vivo activated PD1+ T cells significantly increased after re-vaccination during MPA hold, whereas cytokine production and memory differentiation remained unaffected. In summary, antimetabolite hold augmented all arms of immunity during booster vaccination. These data suggest further studies of MMF hold in KTR.
Eva Schrezenmeier, Hector Rincon-Arevalo, Annika Jens, Ana-Luisa Stefanski, Charlotte Hammett, Bilgin Osmanodja, Nadine Koch, Bianca Zukunft, Julia Beck, Michael Oellerich, Vanessa Pross, Carolin Stahl, Mira Choi, Friederike Bachmann, Lutz Liefeldt, Petra Glander, Ekkehard Schütz, Kirsten Bornemann-Kolatzki, Covadonga López del Moral, Hubert Schrezenmeier, Carolin Ludwig, Bernd Jahrsdörfer, Kai-Uwe Eckardt, Nils Lachmann, Katja Kotsch, Thomas Dörner, Fabian Halleck, Arne Sattler, Klemens Budde
Cytomegalovirus (CMV) is a globally ubiquitous pathogen with a seroprevalence of approximately 50% in the UK. CMV infection induces expansion of immunosenescent T cell and NK cell populations with these cells demonstrating lower responsiveness to activation and reduced functionality upon infection and vaccination. In this study, we found that CMV+ participants had normal T cell responses after single dose or homologous vaccination with the viral vector ChAdOx1. In contrast, CMV seropositivity was associated with a loss of T cell IFN-γ secretion following heterologous ChAd-MVA viral vector vaccination. Analysis of participants receiving a single dose of ChAdOx1 demonstrates that T cells from CMV+ donors have a more terminally differentiated profile of CD57+PD1+ CD4+ T cells and CD8+ T cells expressing less IL-2Rα (CD25), and fewer polyfunctional CD4+ T cells 14 days post-vaccination. NK cells from CMV-seropositive individuals also have a reduced activation profile. Overall, our data suggest that although CMV infection enhances immunosenescence of T and NK populations, it does not affect antigen-specific T cell IFN-γ secretion or antibody IgG production after vaccination with the current ChAdOx1 nCoV-19 vaccination regimen in the UK.
Hannah R. Sharpe, Nicholas M. Provine, Georgina S. Bowyer, Pedro Moreira Folegatti, Sandra Belij-Rammerstorfer, Amy Flaxman, Rebecca Makinson, Adrian V.S. Hill, Katie J. Ewer, Andrew J. Pollard, Paul Klenerman, Sarah Gilbert, Teresa Lambe
Sporozoite-based approaches currently represent the most effective vaccine strategies for induction of sterile protection against Plasmodium falciparum (Pf) malaria. Clinical development of sub-unit vaccines is almost exclusively centered around the Circum-sporozoite Protein (CSP) an abundantly expressed protein on the sporozoite membrane. Anti-CSP antibodies are able to block sporozoite invasion and development in human hepatocytes and subsequently prevent clinical malaria. Here we investigated whether sporozoite-induced human antibodies with specificities different from CSP can reduce Pf-liver stage development. IgG preparations were obtained from 12 volunteers inoculated with a protective immunization regime of whole-sporozoites under chloroquine prophylaxis. These IgGs were depleted for CSP-specificity by affinity chromatography. Recovered non-CSP antibodies were tested for sporozoite membrane binding and for functional inhibition of sporozoite invasion of a human hepatoma cell line and hepatocytes both in vitro and in vivo. Post-immunization IgGs depleted for CSP-specificity of 9 out of 12 donors recognized sporozoite surface antigens. Samples from 5 out of 12 donors functionally reduced parasite-liver cell invasion or development using the hepatoma cell line HC-04 and FRG-huHep mice containing human liver cells. The combined data provide clear evidence that non-CSP proteins as yet undefined do represent antibody targets for functional immunity against Plasmodium falciparum parasites responsible for malaria.
Amanda Fabra-García, Annie S.P. Yang, Marije C. Behet, Xi Zen Yap, Youri van Waardenburg, Swarnendu Kaviraj, Kjerstin Lanke, Geert-Jan van Gemert, Matthijs M. Jore, Teun Bousema, Robert W. Sauerwein
BACKGROUND. Adenoviral (Ad)-vectored vaccines are typically administered via intramuscular injection to humans, incapable of inducing respiratory mucosal immunity. However, aerosol delivery of Ad-vectored vaccines remains poorly characterized and its ability to induce mucosal immunity in humans is unknown. This phase 1b trial was to evaluate the safety and immunogenicity of human serotype-5 Ad-vectored tuberculosis (TB) vaccine (AdHu5Ag85A) delivered to humans via inhaled aerosol or intramuscular injection. METHODS. 31 healthy, previously BCG-vaccinated adults were enrolled. AdHu5Ag85A was administered by single-dose aerosol using Aeroneb® Solo Nebulizer or by intramuscular (IM) injection. The study consisted of the low dose (LD) aerosol, high dose (HD) aerosol and IM groups. The adverse events were assessed at various times post-vaccination. Immunogenicity data were collected from the peripheral blood and bronchoalveolar lavage samples at baseline and select timepoints post-vaccination. RESULTS. The nebulized aerosol droplets were <5.39µm in size. Both LD and HD of AdHu5Ag85A administered by aerosol inhalation and IM injection were safe and well-tolerated. Both aerosol doses, particularly LD, but not IM, vaccination markedly induced airway tissue-resident memory CD4 and CD8 T cells of polyfunctionality. While as expected, IM vaccination induced Ag85A-specific T cell responses in the blood, the LD aerosol vaccination also elicited such T cells in the blood. Furthermore, the LD aerosol vaccination induced persisting transcriptional changes in alveolar macrophages. CONCLUSIONS. Inhaled aerosol delivery of Ad-vectored vaccine is a safe and superior way to elicit respiratory mucosal immunity. This study warrants further development of aerosol vaccine strategies against respiratory pathogens including TB and COVID-19. TRIAL REGISTRATION. This trial is registered with ClinicalTrial.gov, NCT# 02337270. FUNDING. The Canadian Institutes for Health Research and the Natural Sciences and Engineering Research Council of Canada.
Mangalakumari Jeyanathan, Dominik K. Fritz, Sam Afkhami, Emilio Aguirre, Karen J. Howie, Anna Zganiacz, Anna Dvorkin-Gheva, Michael R. Thompson, Richard Silver, Ruth P. Cusack, Brian D. Lichty, Paul M. O'Byrne, Martin Kolb, Maria Fe C. Medina, Myrna B. Dolovich, Imran Satia, Gail M Gauvreau, Zhou Xing, Fiona Smaill
mRNA vaccines for SARS-CoV-2 have shown exceptional clinical efficacy, providing robust protection against severe disease. However, our understanding of transcriptional and repertoire changes following full vaccination remains incomplete. We used scRNA-Seq and functional assays to compare humoral and cellular responses to 2 doses of mRNA vaccine with responses observed in convalescent individuals with asymptomatic disease. Our analyses revealed enrichment of spike-specific B cells, activated CD4+ T cells, and robust antigen-specific polyfunctional CD4+ T cell responses following vaccination. On the other hand, although clonally expanded CD8+ T cells were observed following both vaccination and natural infection, CD8+ T cell responses were relatively weak and variable. In addition, TCR gene usage was variable, reflecting the diversity of repertoires and MHC polymorphism in the human population. Natural infection induced expansion of CD8+ T cell clones that occupy distinct clusters compared to those induced by vaccination and likely recognize a broader set of viral antigens of viral epitopes presented by the virus not seen in the mRNA vaccine. Our study highlights a coordinated adaptive immune response in which early CD4+ T cell responses facilitate the development of the B cell response and substantial expansion of effector CD8+ T cells, together capable of contributing to future recall responses.
Suhas Sureshchandra, Sloan A. Lewis, Brianna M. Doratt, Allen Jankeel, Izabela Coimbra Ibraim, Ilhem Messaoudi
Chikungunya is a mosquito-borne disease that causes periodic but explosive epidemics of acute disease throughout the tropical world. Vaccine development against chikungunya virus (CHIKV) has been hampered by the inability to conduct efficacy trials due to the unpredictability of CHIKV outbreaks. Therefore, immune correlates are being explored to gain inference into vaccine-induced protection. Current study is an in-depth serological characterization of Fab and Fc-mediated antibody responses in selected Phase 2 clinical trial participants following immunization with the recombinant measles-vectored CHIKV vaccine, MV-CHIK. Antibody comparisons were conducted between participants who received prime versus prime-boost vaccine regimens. MV-CHIK vaccination elicited potent Fab-mediated antibodies (such as CHIKV-specific IgG, neutralization and avidity), including dominant IgG3 responses which translated into strong antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). At 1-month, prime-boost immunization lead to significantly greater responses in every measured Fab and Fc antibody parameter. Interestingly, prime-boost-elicited antibodies decreased rapidly over time, until at 6-months both vaccine regimens displayed similar antibody profiles. Nonetheless, antibody avidity and ADCP remained significantly greater following boost immunization. Our observations suggest that a prime-boost administration of MV-CHIK will be more appropriate for CHIKV-endemic regions, while a prime only regimen may be sufficient for travel purposes or outbreak situations.
Roland Tschismarov, Raphaël M. Zellweger, Min Jie Koh, Yan Shan Leong, Jenny G. Low, Eng Eong Ooi, Christian W. Mandl, Katrin Ramsauer, Ruklanthi de Alwis
Natural aging and human immunodeficiency virus (HIV) infection are associated with chronic low-grade systemic inflammation, immune senescence, and impaired antibody (Ab) responses to vaccines such as influenza (flu). We investigated the role of Interleukin (IL)-21, a CD4 T follicular helper cells (Tfh) regulator, on flu vaccine Ab response in non-human primates (NHPs) in the context of age and controlled simian immunodeficiency virus (SIV) mac239 infection. Three doses of the flu vaccine with or without IL-21-IgFc were administered at 3-month intervals in aged SIV+ NHPs following virus suppression with anti-retroviral therapy. IL-21 treated animals demonstrated higher day 14 post-boost Ab responses which associated with expanded CD4+ T CM cells and peripheral (p) Tfh expressing T cell immunoreceptor with Ig and ITIM domains (TIGIT), expanded activated memory B cells and contracted CD11b+ monocytes. Draining lymph node (LN) tissue from IL-21 treated animals revealed direct association between LN follicle Tfh density and frequency of circulating TIGIT+ pTfh cells. We conclude that IL-21 enhances flu vaccine-induced Ab responses in SIV+ aged RM acting as an adjuvant modulating LN germinal center activity. Strategies to supplement IL-21 in aging could be a valuable addition in the toolbox for improving vaccine responses in an aging HIV+ population.
Daniel Kvistad, Suresh Pallikkuth, Tirupataiah Sirupangi, Rajendra Pahwa, Alexander Kizhner, Constantinos Petrovas, Francois Villinger, Savita Pahwa
No posts were found with this tag.