BACKGROUND. Whether airspace biomarkers add value to plasma biomarkers in studying ARDS is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs' impact in patients with ARDS. METHODS. We carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate to severe ARDS. Non-bronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes. RESULTS. Compared to placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), interleukin-6 (IL-6), and soluble tumor necrosis factor receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI -12.3 to -1.0, p = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6 point increase in day 3 radiographic assessment of lung edema score (95% CI 2.4 to 10.7, p = 0.004). CONCLUSIONS. MSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS. TRIAL REGISTRATION. NCT02097641 FUNDING. National Heart, Lung, and Blood Institute
Katherine D. Wick, Aleksandra Leligdowicz, Hanjing Zhuo, Lorraine B. Ware, Michael A. Matthay
Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.
Pauliina Filppu, Jayendrakishore Tanjore Ramanathan, Kirsi J. Granberg, Erika Gucciardo, Hannu Haapasalo, Kaisa Lehti, Matti Nykter, Vadim Le Joncour, Pirjo Laakkonen
Skeletal muscle can regenerate from muscle stem cells and their myogenic precursor cell progeny, myoblasts. However, precise gene editing in human muscle stem cells for autologous cell replacement therapies of untreatable genetic muscle diseases has not yet been reported. Loss-of-function mutations in SGCA, encoding α-sarcoglycan, cause limb-girdle muscular dystrophy 2D/R3, an early onset, severe and rapidly progressive form of muscular dystrophy affecting equally girls and boys. Patients suffer from muscle degeneration and atrophy affecting the limbs, respiratory muscles, and the heart. We isolated human muscle stem cells from two donors with the common SGCA c.157G>A mutation affecting the last coding nucleotide of exon 2. We found that c.157G>A is an exonic splicing mutation that induces skipping of two co-regulated exons. Using adenine base editing, we corrected the mutation in the cells from both donors with >90% efficiency, thereby rescuing the splicing defect and α-sarcoglycan expression. Base edited patient cells regenerated muscle and contributed to the Pax7 positive satellite cell compartment in vivo in mouse xenografts. We hereby provide the first evidence that autologous gene repaired human muscle stem cells can be harnessed for cell replacement therapies of muscular dystrophies.
Helena Escobar, Anne Krause, Sandra Keiper, Janine Kieshauer, Stefanie Müthel, Manuel García de Paredes, Eric Metzler, Ralf Kühn, Florian Heyd, Simone Spuler
Human pluripotent stem cells (PSCs), which are composed of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an opportunity to advance cardiac cell therapy–based clinical trials. However, an important hurdle that must be overcome is the risk of teratoma formation after cell transplantation due to the proliferative capacity of residual undifferentiated PSCs in differentiation batches. To tackle this problem, we propose the use of a minimal noncardiotoxic doxorubicin dose as a purifying agent to selectively target rapidly proliferating stem cells for cell death, which will provide a purer population of terminally differentiated cardiomyocytes before cell transplantation. In this study, we determined an appropriate in vitro doxorubicin dose that (a) eliminates residual undifferentiated stem cells before cell injection to prevent teratoma formation after cell transplantation and (b) does not cause cardiotoxicity in ESC-derived cardiomyocytes (CMs) as demonstrated through contractility analysis, electrophysiology, topoisomerase activity assay, and quantification of reactive oxygen species generation. This study establishes a potentially novel method for tumorigenic-free cell therapy studies aimed at clinical applications of cardiac cell transplantation.
Tony Chour, Lei Tian, Edward Lau, Dilip Thomas, Ilanit Itzhaki, Olfat Malak, Joe Z. Zhang, Xulei Qin, Mirwais Wardak, Yonggang Liu, Mark Chandy, Katelyn E. Black, Maggie P.Y. Lam, Evgenios Neofytou, Joseph C. Wu
After 9/11, threat of nuclear attack on American urban centers prompted government agencies to develop medical radiation countermeasures to mitigate hematopoietic-acute radiation syndrome (H-ARS) and higher-dose gastrointestinal-ARS (GI-ARS) lethality. While re-purposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS in pre-clinical models, no mitigator potentially deliverable under mass casualty conditions preserves GI tract. Here we generate anti-ceramide 6B5 single-chain variable fragment (scFv) and show subcutaneous 6B5 scFv delivery at 24h after a 90% lethal GI-ARS dose of 15Gy mitigates mouse lethality, despite administration after DNA repair is complete. We define an alternate target to DNA repair, an evolving pattern of ceramide-mediated endothelial apoptosis post-radiation, which when disrupted by 6B5 scFv, initiates a durable program of tissue repair, permitting crypt, organ and mouse survival. We posit successful pre-clinical development will render anti-ceramide 6B5 scFv a candidate for inclusion in the Strategic National Stockpile for distribution after a radiation catastrophe.
Jimmy A. Rotolo, Chii Shyang Fong, Sahra Bodo, Prashanth K. B. Nagesh, John D. Fuller, Thivashnee Sharma, Alessandra Piersigilli, Zhigang Zhang, Zvi Fuks, Vijay K. Singh, Richard Kolesnick
Limitations in cell proliferation are important for normal function of differentiated tissues, and essential for the safty of cell replacement products made from pluripotent stem cells, which have unlimited proliferative potential. To evaluate whether these limitations can be established pharmacologically, we exposed pancreatic progenitors differentiating from human pluripotent stem cells to small molecules that interfere with cell cycle progression either by inducing G1 arrest, impairing S-phase entry, or S-phase completion and determined growth potential, differentiation and function of insulin-producing endocrine cells. We found that the combination of G1 arrest with a compromised ability to complete DNA replication promoted the differentiation of pancreatic progenitor cells towards insulin-producing cells and could substitute for endocrine differentiation factors. Reduced replication fork speed during differentiation improved the stability of insulin expression, and the resulting cells protected mice from diabetes without the formation of cystic growths. The proliferative potential of grafts was proportional to the reduction of replication fork speed during pancreatic differentiation. Therefore, a compromised ability to enter and complete S-phase is a functionally important property of pancreatic endocrine differentiation, can be achieved by reducing replication fork speed, and is an important determinant of cell-intrinsic limitations of growth.
Lina Sui, Yurong Xin, Qian Du, Daniela Georgieva, Giacomo Diedenhofen, Leena Haataja, Qi Su, Michael V. Zuccaro, Jinrang Kim, Jiayu Fu, Yuan Xing, Yi He, Danielle Baum, Robin S. Goland, Yong Wang, Jose Oberholzer, Fabrizio Barbetti, Peter Arvan, Sandra Kleiner, Dieter Egli
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) with CCR5– donor cells is the only treatment known to cure HIV-1 in patients with underlying malignancy. This is likely due to a donor cell–mediated graft-versus-host effect targeting HIV reservoirs. Allo-HSCT would not be an acceptable therapy for most people living with HIV due to the transplant-related side effects. Chimeric antigen receptor (CAR) immunotherapies specifically traffic to malignant lymphoid tissues (lymphomas) and, in some settings, are able to replace allo-HSCT. Here, we quantified the engraftment of HSC-derived, virus-directed CAR T cells within HIV reservoirs in a macaque model of HIV infection, using potentially novel IHC assays. HSC-derived CAR cells trafficked to and displayed multilineage engraftment within tissue-associated viral reservoirs, persisting for nearly 2 years in lymphoid germinal centers, the brain, and the gastrointestinal tract. Our findings demonstrate that HSC-derived CAR+ cells reside long-term and proliferate in numerous tissues relevant for HIV infection and cancer.
Isaac M. Barber-Axthelm, Valerie Barber-Axthelm, Kai Yin Sze, Anjie Zhen, Gajendra W. Suryawanshi, Irvin S.Y. Chen, Jerome A. Zack, Scott G. Kitchen, Hans-Peter Kiem, Christopher W. Peterson
Asymmetric cell division (ACD) enables the maintenance of a stem cell population while simultaneously generating differentiated progeny. Cancer stem cells (CSCs) undergo multiple modes of cell division during tumor expansion and in response to therapy, yet the functional consequences of these division modes remain to be determined. Using a fluorescent reporter for cell surface receptor distribution during mitosis, we found that ACD generated a daughter cell with enhanced therapeutic resistance and increased co-enrichment of epidermal growth factor receptor (EGFR) and neurotrophin receptor (p75NTR) from a glioblastoma CSC. Stimulation of both receptors antagonized differentiation induction and promoted self-renewal capacity. p75NTR knockdown enhanced the therapeutic efficacy of EGFR inhibition, indicating that co-inheritance of p75NTR and EGFR promotes resistance to EGFR inhibition through a redundant mechanism. These data demonstrate that ACD produces progeny with co-enriched growth factor receptors, which contributes to the generation of a more therapeutically resistant CSC population.
Masahiro Hitomi, Anastasia P. Chumakova, Daniel J. Silver, Arnon M. Knudsen, W. Dean Pontius, Stephanie Murphy, Neha S. Anand, Bjarne Winther Kristensen, Justin Lathia
Resident vascular adventitial SCA1(+) progenitor (AdvSca1) cells are essential in vascular development and injury. However, the heterogeneity of AdvSca1 cells presents a unique challenge in understanding signaling pathways orchestrating their behavior in homeostasis and injury responses. Using smooth muscle cell (SMC) lineage tracing models, we identified a subpopulation of AdvSca1 cells (AdvSca1-SM) originating from mature SMCs that undergo reprogramming in situ and exhibit a multipotent phenotype. Here we employed lineage tracing and RNA sequencing to define the signaling pathways regulating SMC-to-AdvSca1-SM cell reprogramming and AdvSca1-SM progenitor cell phenotype. Unbiased hierarchical clustering revealed that genes related to hedgehog/WNT/beta-catenin signaling are significantly enriched in AdvSca1-SM cells, emphasizing the importance of this signaling axis in the reprogramming event. Leveraging AdvSca1-SM-specific expression of Gli1, we generated Gli1-CreERT2-ROSA26-YFP reporter mice to selectively track AdvSca1-SM cells. We demonstrated that physiologically relevant vascular injury or AdvSca1-SM cell-specific Klf4 depletion facilitated the proliferation and differentiation of AdvSca1-SM cells to a pro-fibrotic myofibroblast phenotype rather than macrophages. Surprisingly, AdvSca1-SM cells selectively contributed to adventitial remodeling and fibrosis, but little to neointima formation. Together, these findings strongly support therapeutics aimed at preserving the AdvSca1-SM cell phenotype as a viable anti-fibrotic approach.
Sizhao Lu, Austin J. Jolly, Keith A. Strand, Allison M. Dubner, Marie F. Mutryn, Karen S. Moulton, Raphael A. Nemenoff, Mark W. Majesky, Mary C.M. Weiser-Evans
Chronic kidney disease (CKD) induces the failure of arteriovenous fistulas (AVF) and promotes the differentiation of vascular adventitial GLI1+ mesenchymal stem cells (GMCs). However, the roles of GMCs in forming neointima in AVFs remains unknown. GMCs isolated from CKD mice showed increased potential capacity of differentiation into myofibroblast-like cells. Increased activation of expression of PDGFRA and hedgehog (HH) signaling were detected in adventitial cells of AVFs from ESRD patients and CKD mice. PDGFRA was translocated and accumulated in early endosome when hedgehog signaling stimulates was activated. In endosome, PDGFRA mediated activation of TGFB1/SMAD signaling promoting GMCs differentiation into myofibroblast, extracellular matrix deposition, and vascular fibrosis. These responses resulted in neointima formation and AVF failure. Knockout (KO) of Pdgfra or inhibition of HH signaling in GMCs suppressed the differentiation of GMCs into myofibroblasts. In vivo, specific KO of Pdgfra inhibited GMC activation and vascular fibrosis, resulting in suppression of neointima formation and improvement of AVF patency despite CKD. Our findings could yield strategies for maintaining AVF functions.
Ke Song, Ying Qing, Qunying Guo, Eric K. Peden, Changyi Chen, William E. Mitch, Luan Truong, Jizhong Cheng
No posts were found with this tag.