Suresh Gopi Kalathil, Amit Anand Lugade, Austin Miller, Renuka Iyer, Yasmin Thanavala
The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (
Jesús García-Donas, Benoit Beuselinck, Lucía Inglada-Pérez, Osvaldo Graña, Patrick Schöffski, Agnieszka Wozniak, Oliver Bechter, Maria Apellániz-Ruiz, Luis Javier Leandro-García, Emilio Esteban, Daniel E. Castellano, Aranzazu González del Alba, Miguel Angel Climent, Susana Hernando, José Angel Arranz, Manuel Morente, David G. Pisano, Mercedes Robledo, Cristina Rodriguez-Antona
The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in
Everett J. Moding, Hooney D. Min, Katherine D. Castle, Moiez Ali, Loretta Woodlief, Nerissa Williams, Yan Ma, Yongbaek Kim, Chang-Lung Lee, David G. Kirsch
DC vaccination with autologous tumor lysate has demonstrated promising results for the treatment of glioblastoma (GBM) in preclinical and clinical studies. While the vaccine appears capable of inducing T cell infiltration into tumors, the effectiveness of active vaccination in progressively growing tumors is less profound. In parallel, a number of studies have identified negative costimulatory pathways, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1), as relevant mediators of the intratumoral immune responses. Clinical responses to PD-1 pathway inhibition, however, have also been varied. To evaluate the relevance to established glioma, the effects of PD-1 blockade following DC vaccination were tested in intracranial (i.c.) glioma tumor–bearing mice. Treatment with both DC vaccination and PD-1 mAb blockade resulted in long-term survival, while neither agent alone induced a survival benefit in animals with larger, established tumors. This survival benefit was completely dependent on CD8+ T cells. Additionally, DC vaccine plus PD-1 mAb blockade resulted in the upregulation of integrin homing and immunologic memory markers on tumor-infiltrating lymphocytes (TILs). In clinical samples, DC vaccination in GBM patients was associated with upregulation of PD-1 expression in vivo, while ex vivo blockade of PD-1 on freshly isolated TILs dramatically enhanced autologous tumor cell cytolysis. These findings strongly suggest that the PD-1/PD-L1 pathway plays an important role in the adaptive immune resistance of established GBM in response to antitumor active vaccination and provide us with a rationale for the clinical translation of this combination therapy.
Joseph P. Antonios, Horacio Soto, Richard G. Everson, Joey Orpilla, Diana Moughon, Namjo Shin, Shaina Sedighim, William H. Yong, Gang Li, Timothy F. Cloughesy, Linda M. Liau, Robert M. Prins
High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and
Marcin P. Iwanicki, Hsing-Yu Chen, Claudia Iavarone, Ioannis K. Zervantonakis, Taru Muranen, Marián Novak, Tan A. Ince, Ronny Drapkin, Joan S. Brugge
Tregs imprint an early immunotolerant tumor environment that prevents effective antitumor immune responses. Using transcriptomics of tumor tissues, we identified early upregulation of VEGF and TGF-β pathways compatible with tolerance imprinting. Silencing of VEGF or TGF-β in tumor cells induced early and pleiotropic modulation of immune-related transcriptome signatures in tumor tissues. These were surprisingly similar for both silenced tumors and related to common downstream effects on Tregs. Silencing of VEGF or TGF-β resulted in dramatically delayed tumor growth, associated with decreased Tregs and myeloid-derived suppressor cells and increased effector T cell activation in tumor infiltrates. Strikingly, co-silencing of TGF-β and VEGF led to a substantial spontaneous tumor eradication rate and the combination of their respective inhibitory drugs was synergistic. VEGF and/or TGF-β silencing also restored tumor sensitivity to tumor-specific cell therapies and markedly improved the efficacy of anti–PD-1/anti–CTLA-4 treatment. Thus, TGF-β and VEGF cooperatively control the tolerant environment of tumors and are targets for improved cancer immunotherapies.
Tristan Courau, Djamel Nehar-Belaid, Laura Florez, Béatrice Levacher, Thomas Vazquez, Faustine Brimaud, Bertrand Bellier, David Klatzmann
Marlise R. Luskin, Phyllis A. Gimotty, Catherine Smith, Alison W. Loren, Maria E. Figueroa, Jenna Harrison, Zhuoxin Sun, Martin S. Tallman, Elisabeth M. Paietta, Mark R. Litzow, Ari M. Melnick, Ross L. Levine, Hugo F. Fernandez, Selina M. Luger, Martin Carroll, Stephen R. Master, Gerald B.W. Wertheim
Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non–small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional
Grit S. Herter-Sprie, Shohei Koyama, Houari Korideck, Josephine Hai, Jiehui Deng, Yvonne Y. Li, Kevin A. Buczkowski, Aaron K. Grant, Soumya Ullas, Kevin Rhee, Jillian D. Cavanaugh, Neermala Poudel Neupane, Camilla L. Christensen, Jan M. Herter, G. Mike Makrigiorgos, F. Stephen Hodi, Gordon J. Freeman, Glenn Dranoff, Peter S. Hammerman, Alec C. Kimmelman, Kwok-Kin Wong
Despite major advances in early detection and prognosis, chemotherapy resistance is a major hurdle in the battle against breast cancer. Identifying predictive markers and understanding the mechanisms are key steps to overcoming chemoresistance. Methylation-controlled J protein (MCJ, also known as DNAJC15) is a negative regulator of mitochondrial respiration and has been associated with chemotherapeutic drug sensitivity in cancer cell lines. Here we show, in a retrospective study of a large cohort of breast cancer patients, that low MCJ expression in breast tumors predicts high risk of relapse in patients treated with chemotherapy; however, MCJ expression does not correlate with response to endocrine therapy. In a prospective study in breast cancer patients undergoing neoadjuvant therapy, low MCJ expression also correlates with poor clinical response to chemotherapy and decreased disease-free survival. Using MCJ-deficient mice, we demonstrate that lack of MCJ is sufficient to induce mammary tumor chemoresistance in vivo. Thus, loss of expression of this endogenous mitochondrial modulator in breast cancer promotes the development of chemoresistance.
Maria J. Fernández-Cabezudo, Issam Faour, Kenneth Jones, Devin P. Champagne, Mohammed A. Jaloudi, Yassir A. Mohamed, Ghada Bashir, Saeeda Almarzooqi, Alia Albawardi, M. Jawad Hashim, Thomas S. Roberts, Haytham El-Salhat, Hakam El-Taji, Adnan Kassis, Dylan E. O’Sullivan, Brock C. Christensen, James DeGregori, Basel K. al-Ramadi, Mercedes Rincon
Limited transendothelial permeability across tumor microvessels represents a significant bottleneck in the development of tumor-specific diagnostic agents and theranostic drugs. Here, we show an approach to increase transendothelial permeability of macromolecular and nanoparticle-based contrast agents via inhibition of the type I TGF-β receptor, activin-like kinase 5 (Alk5), in tumors. Alk5 inhibition significantly increased tumor contrast agent delivery and enhancement on imaging studies, while healthy organs remained relatively unaffected. Imaging data correlated with significantly decreased tumor interstitial fluid pressure, while tumor vascular density remained unchanged. This immediately clinically translatable concept involving Alk5 inhibitor pretreatment prior to an imaging study could be leveraged for improved tumor delivery of macromolecular and nanoparticle-based imaging probes and, thereby, facilitate development of more sensitive imaging tests for cancer diagnosis, enhanced tumor characterization, and personalized, image-guided therapies.
Heike E. Daldrup-Link, Suchismita Mohanty, Celina Ansari, Olga Lenkov, Aubie Shaw, Ken Ito, Su Hyun Hong, Matthias Hoffmann, Laura Pisani, Nancy Boudreau, Sanjiv Sam Gambhir, Lisa M. Coussens
No posts were found with this tag.