Cardiovascular progenitor cells (CPCs) expressing the ISL1-LIM–homeodomain transcription factor contribute developmentally to cardiomyocytes in all 4 chambers of the heart. Here, we show that ISL1-CPCs can be applied to myocardial regeneration following injury. We used a rapid 3D methylcellulose approach to form murine and human ISL1-CPC spheroids that engrafted after myocardial infarction in murine hearts, where they differentiated into cardiomyocytes and endothelial cells, integrating into the myocardium and forming new blood vessels. ISL1-CPC spheroid–treated mice exhibited reduced infarct area and increased blood vessel formation compared with control animals. Moreover, left ventricular (LV) contractile function was significantly better in mice transplanted with ISL1-CPCs 4 weeks after injury than that in control animals. These results provide proof-of-concept of a cardiac repair strategy employing ISL1-CPCs that, based on our previous lineage-tracing studies, are committed to forming heart tissue, in combination with a robust methylcellulose spheroid–based delivery approach.
Oscar Bartulos, Zhen Wu Zhuang, Yan Huang, Nicole Mikush, Carol Suh, Alda Bregasi, Lin Wang, William Chang, Diane S. Krause, Lawrence H. Young, Jordan S. Pober, Yibing Qyang
Homeostasis of the gastrointestinal (GI) tract is controlled by complex interactions between epithelial and immune cells and the resident microbiota. Here, we studied the role of Wnt signaling in GI homeostasis using
Haim Belinson, Adam K. Savage, Douglas Fadrosh, Yien-Ming Kuo, Din Lin, Ricardo Valladares, Ysbrand Nusse, Anthony Wynshaw-Boris, Susan V. Lynch, Richard M. Locksley, Ophir D. Klein
Tissue-resident memory T cells (TRM) are a recently defined, noncirculating subset with the potential for rapid in situ protective responses, although their generation and role in vaccine-mediated immune responses is unclear. Here, we assessed TRM generation and lung-localized protection following administration of currently licensed influenza vaccines, including injectable inactivated influenza virus (IIV, Fluzone) and i.n. administered live-attenuated influenza virus (LAIV, FluMist) vaccines. We found that, while IIV preferentially induced strain-specific neutralizing antibodies, LAIV generated lung-localized, virus-specific T cell responses. Moreover, LAIV but not IIV generated lung CD4+ TRM and virus-specific CD8+ TRM, similar in phenotype to those generated by influenza virus infection. Importantly, these vaccine-generated TRM mediated cross-strain protection, independent of circulating T cells and neutralizing antibodies, which persisted long-term after vaccination. Interestingly, intranasal administration of IIV or injection of LAIV failed to elicit T cell responses or provide protection against viral infection, demonstrating dual requirements for respiratory targeting and a live-attenuated strain to establish TRM. The ability of LAIV to generate lung TRM capable of providing long-term protection against nonvaccine viral strains, as demonstrated here, has important implications for protecting the population against emergent influenza pandemics by direct fortification of lung-specific immunity.
Kyra D. Zens, Jun Kui Chen, Donna L. Farber
The majority of metastatic renal cell carcinoma (RCC) patients are treated with tyrosine kinase inhibitors (TKI) in first-line treatment; however, a fraction are refractory to these antiangiogenic drugs. MicroRNAs (miRNAs) are regulatory molecules proven to be accurate biomarkers in cancer. Here, we identified miRNAs predictive of progressive disease under TKI treatment through deep sequencing of 74 metastatic clear cell RCC cases uniformly treated with these drugs. Twenty-nine miRNAs were differentially expressed in the tumors of patients who progressed under TKI therapy (
Jesús García-Donas, Benoit Beuselinck, Lucía Inglada-Pérez, Osvaldo Graña, Patrick Schöffski, Agnieszka Wozniak, Oliver Bechter, Maria Apellániz-Ruiz, Luis Javier Leandro-García, Emilio Esteban, Daniel E. Castellano, Aranzazu González del Alba, Miguel Angel Climent, Susana Hernando, José Angel Arranz, Manuel Morente, David G. Pisano, Mercedes Robledo, Cristina Rodriguez-Antona
High-affinity self-reactive thymocytes are purged in the thymus, and residual self-reactive T cells, which are detectable in healthy subjects, are controlled by peripheral tolerance mechanisms. Breakdown in these mechanisms results in autoimmune disease, but antigen-specific therapy to augment natural mechanisms can prevent this. We aimed to determine when antigen-specific therapy is most effective. Islet autoantigens, proinsulin (PI), and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were expressed in the antigen-presenting cells (APCs) of autoimmune diabetes-prone nonobese diabetic (NOD) mice in a temporally controlled manner. PI expression from gestation until weaning was sufficient to completely protect NOD mice from diabetes, insulitis, and development of insulin autoantibodies. Insulin-specific T cells were significantly diminished, were naive, and did not express IFN-γ when challenged. This long-lasting effect from a brief period of treatment suggests that autoreactive T cells are not produced subsequently. We tracked IGRP206–214-specific CD8+ T cells in NOD mice expressing IGRP in APCs. When IGRP was expressed only until weaning, IGRP206–214-specific CD8+ T cells were not detected later in life. Thus, anti-islet autoimmunity is determined during early life, and autoreactive T cells are not generated in later life. Bolstering tolerance to islet antigens in the perinatal period is sufficient to impart lasting protection from diabetes.
Gaurang Jhala, Jonathan Chee, Prerak M. Trivedi, Claudia Selck, Esteban N. Gurzov, Kate L. Graham, Helen E. Thomas, Thomas W.H. Kay, Balasubramanian Krishnamurthy
The efficacy of allogeneic hematopoietic stem cell transplantation for hematologic malignancies is limited by the difficulty in suppressing graft-versus-host disease (GVHD) without compromising graft-versus-tumor (GVT) effects. We previously showed that RAS/MEK/ERK signaling depends on memory differentiation in human T cells, which confers susceptibility to selective inhibition of naive T cells. Actually, antineoplastic MEK inhibitors selectively suppress alloreactive T cells, sparing virus-specific T cells in vitro. Here, we show that trametinib, a MEK inhibitor clinically approved for melanoma, suppresses GVHD safely without affecting GVT effects in vivo. Trametinib prolonged survival of GVHD mice and attenuated GVHD symptoms and pathology in the gut and skin. It inhibited ERK1/2 phosphorylation and expansion of donor T cells, sparing Tregs and B cells. Although high-dose trametinib inhibited myeloid cell engraftment, low-dose trametinib suppressed GVHD without severe adverse events. Notably, trametinib facilitated the survival of mice transplanted with allogeneic T cells and P815 tumor cells with no residual P815 cells observed in the livers and spleens, whereas tacrolimus resulted in P815 expansion. These results confirm that trametinib selectively suppresses GVHD-inducing T cells while sparing antitumor T cells in vivo, which makes it a promising candidate for translational studies aimed at preventing or treating GVHD.
Hidekazu Itamura, Takero Shindo, Isao Tawara, Yasushi Kubota, Ryusho Kariya, Seiji Okada, Krishna V. Komanduri, Shinya Kimura
We have previously identified prohibitin (PHB) and annexin A2 (ANX2) as proteins interacting on the surface of vascular endothelial cells in white adipose tissue (WAT) of humans and mice. Here, we demonstrate that ANX2 and PHB also interact in adipocytes. Mice lacking ANX2 have normal WAT vascularization, adipogenesis, and glucose metabolism but display WAT hypotrophy due to reduced fatty acid uptake by WAT endothelium and adipocytes. By using cell culture systems in which ANX2/PHB binding is disrupted either genetically or through treatment with a blocking peptide, we show that fatty acid transport efficiency relies on this protein complex. We also provide evidence that the interaction between ANX2 and PHB mediates fatty acid transport from the endothelium into adipocytes. Moreover, we demonstrate that ANX2 and PHB form a complex with the fatty acid transporter CD36. Finally, we show that the colocalization of PHB and CD36 on adipocyte surface is induced by extracellular fatty acids. Together, our results suggest that an unrecognized biochemical interaction between ANX2 and PHB regulates CD36-mediated fatty acid transport in WAT, thus revealing a new potential pathway for intervention in metabolic diseases.
Ahmad Salameh, Alexes C. Daquinag, Daniela I. Staquicini, Zhiqiang An, Katherine A. Hajjar, Renata Pasqualini, Wadih Arap, Mikhail G. Kolonin
Successful induction of allograft tolerance has been achieved in nonhuman primates (NHPs) and humans via induction of transient hematopoietic chimerism. Since allograft tolerance was achieved in these recipients without durable chimerism, peripheral mechanisms are postulated to play a major role. Here, we report our studies of T cell immunity in NHP recipients that achieved long-term tolerance versus those that rejected the allograft (AR). All kidney, heart, and lung transplant recipients underwent simultaneous or delayed donor bone marrow transplantation (DBMT) following conditioning with a nonmyeloablative regimen. After DBMT, mixed lymphocyte culture with CFSE consistently revealed donor-specific loss of CD8+ T cell responses in tolerant (TOL) recipients, while marked CD4+ T cell proliferation in response to donor antigens was found to persist. Interestingly, a significant proportion of the proliferated CD4+ cells were FOXP3+ in TOL recipients, but not in AR or naive NHPs. In TOL recipients, CD4+FOXP3+ cell proliferation against donor antigens was greater than that observed against third-party antigens. Finally, the expanded Tregs appeared to be induced Tregs (iTregs) that were converted from non-Tregs. These data provide support for the hypothesis that specific induction of iTregs by donor antigens is key to long-term allograft tolerance induced by transient mixed chimerism.
Kiyohiko Hotta, Akihiro Aoyama, Tetsu Oura, Yohei Yamada, Makoto Tonsho, Kyu Ha Huh, Kento Kawai, David Schoenfeld, James S. Allan, Joren C. Madsen, Gilles Benichou, Rex-Neal Smith, Robert B. Colvin, David H. Sachs, A. Benedict Cosimi, Tatsuo Kawai
Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness between the swine H3N2v virus and previously circulating human strains, consistent with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the human population, where they had not been circulating, as H3N2v about a decade later. The data also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure to human seasonal strains from the 1990s.
Sandhya Bangaru, Travis Nieusma, Nurgun Kose, Natalie J. Thornburg, Jessica A. Finn, Bryan S. Kaplan, Hannah G. King, Vidisha Singh, Rebecca M. Lampley, Gopal Sapparapu, Alberto Cisneros III, Kathryn M. Edwards, James C. Slaughter, Srilatha Edupuganti, Lilin Lai, Juergen A. Richt, Richard J. Webby, Andrew B. Ward, James E. Crowe Jr.
The tumor suppressor p53 blocks tumor progression in multiple tumor types. Radiation-induced cancer following exposure to radiation therapy or space travel may also be regulated by p53 because p53 has been proposed to respond to DNA damage to suppress tumorigenesis. Here, we investigate the role of p53 in lung carcinogenesis and lymphomagenesis in
Everett J. Moding, Hooney D. Min, Katherine D. Castle, Moiez Ali, Loretta Woodlief, Nerissa Williams, Yan Ma, Yongbaek Kim, Chang-Lung Lee, David G. Kirsch
High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and
Marcin P. Iwanicki, Hsing-Yu Chen, Claudia Iavarone, Ioannis K. Zervantonakis, Taru Muranen, Marián Novak, Tan A. Ince, Ronny Drapkin, Joan S. Brugge
Cancer testis antigens (CTAs) are of clinical interest as biomarkers and present valuable targets for immunotherapy. To comprehensively characterize the CTA landscape of non–small-cell lung cancer (NSCLC), we compared RNAseq data from 199 NSCLC tissues to the normal transcriptome of 142 samples from 32 different normal organs. Of 232 CTAs currently annotated in the Caner Testis Database (CTdatabase), 96 were confirmed in NSCLC. To obtain an unbiased CTA profile of NSCLC, we applied stringent criteria on our RNAseq data set and defined 90 genes as CTAs, of which 55 genes were not annotated in the CTdatabase, thus representing potential new CTAs. Cluster analysis revealed that CTA expression is histology dependent and concurrent expression is common. IHC confirmed tissue-specific protein expression of selected new CTAs (TKTL1, TGIF2LX, VCX, and CXORF67). Furthermore, methylation was identified as a regulatory mechanism of CTA expression based on independent data from The Cancer Genome Atlas. The proposed prognostic impact of CTAs in lung cancer was not confirmed, neither in our RNAseq cohort nor in an independent meta-analysis of 1,117 NSCLC cases. In summary, we defined a set of 90 reliable CTAs, including information on protein expression, methylation, and survival association. The detailed RNAseq catalog can guide biomarker studies and efforts to identify targets for immunotherapeutic strategies.
Dijana Djureinovic, Björn M. Hallström, Masafumi Horie, Johanna Sofia Margareta Mattsson, Linnea La Fleur, Linn Fagerberg, Hans Brunnström, Cecilia Lindskog, Katrin Madjar, Jörg Rahnenführer, Simon Ekman, Elisabeth Ståhle, Hirsh Koyi, Eva Brandén, Karolina Edlund, Jan G. Hengstler, Mats Lambe, Akira Saito, Johan Botling, Fredrik Pontén, Mathias Uhlén, Patrick Micke
Atopic dermatitis (AD) is characterized by reduced barrier function, reduced innate immune activation, and susceptibility to
Ian A. Myles, Kelli W. Williams, Jensen D. Reckhow, Momodou L. Jammeh, Nathan B. Pincus, Inka Sastalla, Danial Saleem, Kelly D. Stone, Sandip K. Datta
DC vaccination with autologous tumor lysate has demonstrated promising results for the treatment of glioblastoma (GBM) in preclinical and clinical studies. While the vaccine appears capable of inducing T cell infiltration into tumors, the effectiveness of active vaccination in progressively growing tumors is less profound. In parallel, a number of studies have identified negative costimulatory pathways, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1), as relevant mediators of the intratumoral immune responses. Clinical responses to PD-1 pathway inhibition, however, have also been varied. To evaluate the relevance to established glioma, the effects of PD-1 blockade following DC vaccination were tested in intracranial (i.c.) glioma tumor–bearing mice. Treatment with both DC vaccination and PD-1 mAb blockade resulted in long-term survival, while neither agent alone induced a survival benefit in animals with larger, established tumors. This survival benefit was completely dependent on CD8+ T cells. Additionally, DC vaccine plus PD-1 mAb blockade resulted in the upregulation of integrin homing and immunologic memory markers on tumor-infiltrating lymphocytes (TILs). In clinical samples, DC vaccination in GBM patients was associated with upregulation of PD-1 expression in vivo, while ex vivo blockade of PD-1 on freshly isolated TILs dramatically enhanced autologous tumor cell cytolysis. These findings strongly suggest that the PD-1/PD-L1 pathway plays an important role in the adaptive immune resistance of established GBM in response to antitumor active vaccination and provide us with a rationale for the clinical translation of this combination therapy.
Joseph P. Antonios, Horacio Soto, Richard G. Everson, Joey Orpilla, Diana Moughon, Namjo Shin, Shaina Sedighim, William H. Yong, Gang Li, Timothy F. Cloughesy, Linda M. Liau, Robert M. Prins
Early after HIV infection there is substantial depletion of CD4+ T cells in the gastrointestinal (GI) tract lamina propria (LP), with associated epithelial barrier damage, leading to microbial translocation and systemic inflammation and immune activation. In this study, we analyzed these early events in the GI tract in a cohort of Thai acute HIV-infected patients and determined the effect of early combination antiretroviral treatment (cART). HIV-uninfected and chronically and acutely HIV-infected patients at different Fiebig stages (I–V) underwent colonic biopsies and then received cART. Immunohistochemistry and quantitative image analysis were performed on cross-sectional and longitudinal colon biopsy specimens (day 0 to week 96) to measure GI tract damage (infiltration of polymorphonuclear cells), inflammation (Mx1, TNF-α), immune activation (Ki-67), and the CD4+ T cell population in the LP. The magnitude of GI tract damage, immune activation, and inflammation was significantly increased, with significantly depleted CD4+ T cells in the LP in all acutely infected groups prior to cART compared with HIV-uninfected control participants. While most patients treated during acute infection resolved GI tract inflammation and immune activation back to baseline levels after 24 weeks of cART, most acutely infected participants did not restore their CD4+ T cells after 96 weeks of cART.
Claire Deleage, Alexandra Schuetz, W. Gregory Alvord, Leslie Johnston, Xing-Pei Hao, David R. Morcock, Rungsun Rerknimitr, James L.K. Fletcher, Suwanna Puttamaswin, Nittaya Phanuphak, Robin Dewar, Joseph M. McCune, Irini Sereti, Merlin Robb, Jerome H. Kim, Timothy W. Schacker, Peter Hunt, Jeffrey D. Lifson, Jintanat Ananworanich, Jacob D. Estes, on behalf of the RV254/SEARCH 010 and RV304/SEARCH 013 Study Groups
Necrotizing fasciitis caused by group A streptococcus (GAS) is a life-threatening, rapidly progressing infection. At present, biofilm is not recognized as a potential problem in GAS necrotizing soft tissue infections (NSTI), as it is typically linked to chronic infections or associated with foreign devices. Here, we present a case of a previously healthy male presenting with NSTI caused by GAS. The infection persisted over 24 days, and the surgeon documented the presence of a “thick layer biofilm” in the fascia. Subsequent analysis of NSTI patient tissue biopsies prospectively included in a multicenter study revealed multiple areas of biofilm in 32% of the patients studied. Biopsies associated with biofilm formation were characterized by massive bacterial load, a pronounced inflammatory response, and clinical signs of more severe tissue involvement. In vitro infections of a human skin tissue model with GAS NSTI isolates also revealed multilayered fibrous biofilm structures, which were found to be under the control of the global Nra gene regulator. The finding of GAS biofilm formation in NSTIs emphasizes the urgent need for biofilm to be considered as a potential complicating microbiological feature of GAS NSTI and, consequently, emphasizes reconsideration of antibiotic treatment protocols.
Nikolai Siemens, Bhavya Chakrakodi, Srikanth Mairpady Shambat, Marina Morgan, Helena Bergsten, Ole Hyldegaard, Steinar Skrede, Per Arnell, Martin B. Madsen, Linda Johansson, INFECT Study Group, Julius Juarez, Lidija Bosnjak, Matthias Mörgelin, Mattias Svensson, Anna Norrby-Teglund
BACKGROUND. Children treated with cerebrospinal fluid (CSF) shunts to manage hydrocephalus frequently develop shunt failure and/or infections, conditions that present with overlapping symptoms. The potential life-threatening nature of shunt infections requires rapid diagnosis; however, traditional microbiology is time consuming, expensive, and potentially unreliable. We set out to identify a biomarker that would identify shunt infection.
METHODS. CSF was assayed for the soluble membrane attack complex (sMAC) by ELISA in patients with suspected shunt failure or infection. CSF was obtained at the time of initial surgical intervention. Statistical analysis was performed to assess the diagnostic potential of sMAC in pyogenic-infected versus noninfected patients.
RESULTS. Children with pyogenic shunt infection had significantly increased sMAC levels compared with noninfected patients (3,211 ± 1,111 ng/ml vs. 26 ± 3.8 ng/ml,
CONCLUSION. Elevated CSF sMAC levels are both sensitive and specific for diagnosing pyogenic shunt infection and may serve as a useful prognostic biomarker during recovery from infection.
FUNDING. This work was supported in part by the Impact Fund of Children’s of Alabama.
Theresa N. Ramos, Anastasia A. Arynchyna, Tessa E. Blackburn, Scott R. Barnum, James M. Johnston