Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Oncology

  • 637 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 48
  • 49
  • 50
  • …
  • 63
  • 64
  • Next →
Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC
Guoxin Zhang, Zhen Dong, Briana C. Prager, Leo J. Y. Kim, Qiulian Wu, Ryan C. Gimple, Xiuxing Wang, Shideng Bao, Petra Hamerlik, Jeremy N. Rich
Guoxin Zhang, Zhen Dong, Briana C. Prager, Leo J. Y. Kim, Qiulian Wu, Ryan C. Gimple, Xiuxing Wang, Shideng Bao, Petra Hamerlik, Jeremy N. Rich
View: Text | PDF

Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC

  • Text
  • PDF
Abstract

Glioblastoma represent universally lethal cancers, containing stem cell-like glioblastoma stem cells (GSCs). While neural stem cells (NSCs) are usually quiescent, single-cell studies suggest that proliferating glioblastoma cells reside in the GSC population. Interrogating in silico glioma databases for epigenetic regulators that correlate with cell cycle regulation, we identified the chromatin remodeler, HELLS, as a potential target in glioblastoma. GSCs preferentially expressed HELLS compared to their differentiated tumor progeny and non-malignant brain cells. Targeting HELLS disrupted GSC proliferation, survival, and self-renewal with induction of replication stress and DNA damage. Investigating potential molecular mechanisms downstream of HELLS revealed that HELLS interacted with the core oncogenic transcription factors, E2F3 and MYC, to regulate gene expression critical to GSC proliferation and maintenance. Supporting the interaction, HELLS expression strongly correlated with targets of E2F3 and MYC transcriptional activity in glioblastoma patients. Potential clinical significance of HELLS was reinforced by improved survival of tumor-bearing mice upon targeting HELLS and poor prognosis of glioma patients with elevated HELLS expression. Collectively, targeting HELLS may permit the functional disruption of the relatively undruggable MYC and E2F3 transcription factors and serve as a novel therapeutic paradigm for glioblastoma.

Authors

Guoxin Zhang, Zhen Dong, Briana C. Prager, Leo J. Y. Kim, Qiulian Wu, Ryan C. Gimple, Xiuxing Wang, Shideng Bao, Petra Hamerlik, Jeremy N. Rich

×

Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment
Kelly L. Singel, Tiffany R. Emmons, ANM Nazmul H. Khan, Paul C. Mayor, Shichen Shen, Jerry T. Wong, Kayla Morrell, Kevin H. Eng, Jaron Mark, Richard B. Bankert, Junko Matsuzaki, Richard C. Koya, Anna M. Blom, Kenneth R. McLeish, Jun Qu, Sanjay Ram, Kirsten B. Moysich, Scott I. Abrams, Kunle Odunsi, Emese Zsiros, Brahm H. Segal
Kelly L. Singel, Tiffany R. Emmons, ANM Nazmul H. Khan, Paul C. Mayor, Shichen Shen, Jerry T. Wong, Kayla Morrell, Kevin H. Eng, Jaron Mark, Richard B. Bankert, Junko Matsuzaki, Richard C. Koya, Anna M. Blom, Kenneth R. McLeish, Jun Qu, Sanjay Ram, Kirsten B. Moysich, Scott I. Abrams, Kunle Odunsi, Emese Zsiros, Brahm H. Segal
View: Text | PDF

Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment

  • Text
  • PDF
Abstract

Epithelial ovarian cancer (EOC) often presents with metastases and ascites. Granulocytic myeloid-derived suppressor cells are an immature population that impairs anti-tumor immunity. Since suppressive granulocytes in the ascites of patients with newly diagnosed EOC were morphologically mature, we hypothesized that PMN were rendered suppressive in the tumor microenvironment. Circulating PMN from patients were not suppressive, but acquired a suppressor phenotype (defined as ≥ 1 log10 reduction of anti-CD3/CD28-stimulated T cell proliferation) after ascites supernatant exposure. Ascites supernatants (20/31) recapitulated the suppressor phenotype in PMN from healthy donors. T cell proliferation was restored with ascites supernatant removal and re-stimulation. PMN suppressors also inhibited T cell activation and cytokine production. PMN suppressors completely suppressed proliferation in naïve, central memory, and effector memory T cells, and in engineered tumor antigen-specific cytotoxic T lymphocytes, while antigen-specific cell lysis was unaffected. Inhibition of complement C3 activation and PMN effector functions, including CR3 signaling, protein synthesis, and vesicular trafficking, abrogated the PMN suppressor phenotype. Moreover, malignant effusions from patients with various metastatic cancers also induced the C3-dependent PMN suppressor phenotype. These results point to PMN impairing T cell expansion and activation in the tumor microenvironment and the potential for complement inhibition to abrogate this barrier to anti-tumor immunity.

Authors

Kelly L. Singel, Tiffany R. Emmons, ANM Nazmul H. Khan, Paul C. Mayor, Shichen Shen, Jerry T. Wong, Kayla Morrell, Kevin H. Eng, Jaron Mark, Richard B. Bankert, Junko Matsuzaki, Richard C. Koya, Anna M. Blom, Kenneth R. McLeish, Jun Qu, Sanjay Ram, Kirsten B. Moysich, Scott I. Abrams, Kunle Odunsi, Emese Zsiros, Brahm H. Segal

×

IFN regulatory factor–8 expression in macrophages governs an antimetastatic program
Danielle Y.F. Twum, Sean H. Colligan, Nicholas C. Hoffend, Eriko Katsuta, Eduardo Cortes Gomez, Mary Lynn Hensen, Mukund Seshadri, Michael J. Nemeth, Scott I. Abrams
Danielle Y.F. Twum, Sean H. Colligan, Nicholas C. Hoffend, Eriko Katsuta, Eduardo Cortes Gomez, Mary Lynn Hensen, Mukund Seshadri, Michael J. Nemeth, Scott I. Abrams
View: Text | PDF

IFN regulatory factor–8 expression in macrophages governs an antimetastatic program

  • Text
  • PDF
Abstract

High macrophage infiltration in cancer is associated with reduced survival in animal models and in patients. This reflects a shift in the macrophage response from a tumor-suppressive to tumor-supportive program governed by transcriptional events regulated by the inflammatory milieu. Although several transcription factors are known to drive a prometastatic program, those that govern an antimetastatic program are less understood. IFN regulatory factor-8 (IRF8) is integral for macrophage responses against infections. Using a genetic loss-of-function approach, we tested the hypothesis that IRF8 expression in macrophages governs their capacity to inhibit metastasis. We found that: (a) metastasis was significantly increased in mice with IRF8-deficient macrophages; (b) IRF8-deficient macrophages displayed a program enriched for genes associated with metastasis; and (c) lower IRF8 expression correlated with reduced survival in human breast and lung cancer, as well as melanoma, with high or low macrophage infiltration. Thus, a macrophagehiIRF8hi signature was more favorable than a macrophagehiIRF8lo signature. The same held true for a macrophageloIRF8hi vs. a macrophageloIRF8lo signature. These data suggest that incorporating IRF8 expression levels within a broader macrophage signature or profile strengthens prognostic merit. Overall, to our knowledge, our findings reveal a previously unrecognized role for IRF8 in macrophage biology to control metastasis or predict outcome.

Authors

Danielle Y.F. Twum, Sean H. Colligan, Nicholas C. Hoffend, Eriko Katsuta, Eduardo Cortes Gomez, Mary Lynn Hensen, Mukund Seshadri, Michael J. Nemeth, Scott I. Abrams

×

Tofacitinib enhances delivery of antibody-based therapeutics to tumor cells through modulation of inflammatory cells
Nathan Simon, Antonella Antignani, Stephen M. Hewitt, Massimo Gadina, Christine Alewine, David FitzGerald
Nathan Simon, Antonella Antignani, Stephen M. Hewitt, Massimo Gadina, Christine Alewine, David FitzGerald
View: Text | PDF

Tofacitinib enhances delivery of antibody-based therapeutics to tumor cells through modulation of inflammatory cells

  • Text
  • PDF
Abstract

The routes by which antibody-based therapeutics reach malignant cells are poorly defined. Tofacitinib, an FDA-approved JAK inhibitor, reduced tumor-associated inflammatory cells and allowed increased delivery of antibody-based agents to malignant cells. Alone, tofacitinib exhibited no antitumor activity, but combinations with immunotoxins or an antibody drug conjugate resulted in increased anti-tumor responses. Quantification using flow cytometry revealed that antibody-based agents accumulated in malignant cells at higher percentages following tofacitinib treatment. Profiling of tofacitinib-treated tumor-bearing mice indicated that cytokine transcripts and various proteins involved in chemotaxis were reduced compared to vehicle-treated mice. Histological analysis revealed significant changes to the composition of the tumor microenvironment, with reductions in monocytes, macrophages and neutrophils. Tumor-associated inflammatory cells contributed to non-target uptake of antibody-based therapeutics; with mice treated with tofacitinib showing decreased accumulation of therapeutics in intratumoral inflammatory cells and increased delivery to malignant cells. Present findings serve as a rationale for conducting trials where short-term treatments with tofacitinib could be administered in combination with antibody-based therapies.

Authors

Nathan Simon, Antonella Antignani, Stephen M. Hewitt, Massimo Gadina, Christine Alewine, David FitzGerald

×

MicroRNA-155 coordinates the immunological landscape within murine melanoma and correlates with immunity in human cancers
H. Atakan Ekiz, Thomas B. Huffaker, Allie H. Grossmann, W. Zac Stephens, Matthew A. Williams, June L. Round, Ryan M. O'Connell
H. Atakan Ekiz, Thomas B. Huffaker, Allie H. Grossmann, W. Zac Stephens, Matthew A. Williams, June L. Round, Ryan M. O'Connell
View: Text | PDF

MicroRNA-155 coordinates the immunological landscape within murine melanoma and correlates with immunity in human cancers

  • Text
  • PDF
Abstract

miR-155 has recently emerged as an important promoter of antitumor immunity through its functions in T lymphocytes. However, the impact of T cell expressed miR-155 on immune cell dynamics in solid tumors remains unclear. In the present study, we used single-cell RNA-sequencing to define the CD45+ immune cell populations at different timepoints within B16F10 murine melanoma tumors growing in either wild-type or miR-155 T cell conditional knockout (TCKO) mice. miR-155 was required for optimal T cell activation and reinforced the T cell response at the expense of infiltrating myeloid cells. Further, myeloid cells from tumors growing in TCKO mice were defined by an increase in wound healing genes and a decreased IFN-γ response gene signature. Finally, we found that miR-155 expression predicted a favorable outcome in human melanoma patients and was associated with a strong immune signature. Moreover, gene expression analysis of the Cancer Genome Atlas (TCGA) data revealed that miR-155 expression also correlates with an immune-enriched subtype in 29 other human solid tumors. Together, our study provides an unprecedented analysis of the cell types and gene expression signatures of immune cells within experimental melanoma tumors and elucidates the role of miR-155 in coordinating antitumor immune responses in mammalian tumors.

Authors

H. Atakan Ekiz, Thomas B. Huffaker, Allie H. Grossmann, W. Zac Stephens, Matthew A. Williams, June L. Round, Ryan M. O'Connell

×

Multi-parametric liquid biopsy analysis in metastatic prostate cancer
Emmanuelle Hodara, Gareth Morrison, Alexander T. Cunha, Daniel Zainfeld, Tong Xu, Yucheng Xu, Paul W. Dempsey, Paul C. Pagano, Farideh Bischoff, Aditi Khurana, Bonik S. Koo, Marc J. Ting, Philip D. Cotter, Matthew W. Moore, Shelly Gunn, Joshua Usher, Shahrooz Rabizadeh, Peter Danenberg, Kathleen Danenberg, John Carpten, Tanya B. Dorff, David I. Quinn, Amir Goldkorn
Emmanuelle Hodara, Gareth Morrison, Alexander T. Cunha, Daniel Zainfeld, Tong Xu, Yucheng Xu, Paul W. Dempsey, Paul C. Pagano, Farideh Bischoff, Aditi Khurana, Bonik S. Koo, Marc J. Ting, Philip D. Cotter, Matthew W. Moore, Shelly Gunn, Joshua Usher, Shahrooz Rabizadeh, Peter Danenberg, Kathleen Danenberg, John Carpten, Tanya B. Dorff, David I. Quinn, Amir Goldkorn
View: Text | PDF

Multi-parametric liquid biopsy analysis in metastatic prostate cancer

  • Text
  • PDF
Abstract

Molecular profiling of prostate cancer with liquid biopsies such as circulating tumor cells (CTC) and cell-free nucleic acid analysis yields informative yet distinct datasets. Additional insights may be gained by simultaneously interrogating multiple liquid biopsy components to construct a more comprehensive molecular disease profile. We conducted an initial proof of principle study aimed at piloting this multi-parametric approach. Peripheral blood samples from men with metastatic castrate resistant prostate cancer (mCRPC) were analyzed simultaneously for CTC enumeration, single cell copy number variation, CTC DNA and matched cell-free DNA mutations, and plasma cell-free RNA levels of androgen receptor (AR) and AR splice variant (AR-V7). In addition, liquid biopsies were compared with matched tumor profiles when available, and a second liquid biopsy was drawn and analyzed at disease progression in a subset of patients. In this manner, multiparametric liquid biopsy profiles were successfully generated for each patient and time point, demonstrating the feasibility of this approach and highlighting shared as well as unique cancer-relevant alterations. With further refinement and validation in large cohorts, multi-parametric liquid biopsies can optimally integrate disparate but clinically informative datasets and maximize their utility for molecularly directed, real-time patient management.

Authors

Emmanuelle Hodara, Gareth Morrison, Alexander T. Cunha, Daniel Zainfeld, Tong Xu, Yucheng Xu, Paul W. Dempsey, Paul C. Pagano, Farideh Bischoff, Aditi Khurana, Bonik S. Koo, Marc J. Ting, Philip D. Cotter, Matthew W. Moore, Shelly Gunn, Joshua Usher, Shahrooz Rabizadeh, Peter Danenberg, Kathleen Danenberg, John Carpten, Tanya B. Dorff, David I. Quinn, Amir Goldkorn

×

Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency
Yao Zhang, Christina Lee, Shuo Geng, Liwu Li
Yao Zhang, Christina Lee, Shuo Geng, Liwu Li
View: Text | PDF

Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency

  • Text
  • PDF
Abstract

Although the importance of the tumor immune environment for the modulation of tumorigenesis and tumor regression is becoming increasingly clear, most of the research related to tumor-immune therapies has focused on adaptive immune cells, while the role and regulation of innate leukocytes such as neutrophils remains controversial and less defined. Here we observed that the selective deletion of Tollip, a key innate immune-cell modulator, led to enhanced tumor immune surveillance in a chemically induced colorectal cancer model. Tollip-deficient neutrophils significantly elevated T cell activation through enhanced expression of the costimulatory molecule CD80, and reduced expression of the inhibitory molecule PD-L1. Mechanistically, Tollip deficiency increased STAT5 and reduced STAT1, the transcription factors responsible for the expression of CD80 and PD-L1, respectively. Through adoptive transfer, we demonstrate that Tollip-deficient neutrophils, but not Tollip-deficient monocytes, are sufficient to drive enhanced tumor immune surveillance and reduced colorectal cancer burden in vivo. Our data reveal a strategy for the reprogramming of neutrophil functions conducive for the enhancement of the antitumor immune environment.

Authors

Yao Zhang, Christina Lee, Shuo Geng, Liwu Li

×

Carbon irradiation overcomes glioma radioresistance by eradicating stem cells and forming an antiangiogenic and immunopermissive niche
Sara Chiblak, Zili Tang, Dieter Lemke, Maximilian Knoll, Ivana Dokic, Rolf Warta, Mahmoud Moustafa, Walter Mier, Stephan Brons, Carmen Rapp, Stefan Muschal, Philipp Seidel, Martin Bendzsus, Sebastian Adeberg, Otmar D. Wiestler, Uwe Haberkorn, Jürgen Debus, Christel Herold-Mende, Wolfgang Wick, Amir Abdollahi
Sara Chiblak, Zili Tang, Dieter Lemke, Maximilian Knoll, Ivana Dokic, Rolf Warta, Mahmoud Moustafa, Walter Mier, Stephan Brons, Carmen Rapp, Stefan Muschal, Philipp Seidel, Martin Bendzsus, Sebastian Adeberg, Otmar D. Wiestler, Uwe Haberkorn, Jürgen Debus, Christel Herold-Mende, Wolfgang Wick, Amir Abdollahi
View: Text | PDF

Carbon irradiation overcomes glioma radioresistance by eradicating stem cells and forming an antiangiogenic and immunopermissive niche

  • Text
  • PDF
Abstract

Tumor radioresistance leading to local therapy failure remains a major obstacle for successful treatment of high-grade glioma. We hypothesized that distinct radiobiological features of particle therapy with carbon ions may circumvent glioma radioresistance. We demonstrate that carbon irradiation (CIR) efficiently eradicates radioresistant patient-derived glioma stem cells (GSCs), leading to growth inhibition and prolonged survival. The impact of CIR at the tumor–stroma interface was further investigated in 2 syngeneic mouse and 2 orthotopic GSC xenograft models. Intriguingly, tumor regressions and long-term local controls were observed at doses greater than or equal to 15-Gy CIR. Fractionated CIR further prolonged survival. The enhanced relative biological effectiveness of CIR in vivo was attributed to its potent antiangiogenic effects and eradication of radioresistant hypoxic tumor cells. Blockade of the HIF1-α/stromal cell–derived factor 1/CXCR4 axis by CIR reduced the recruitment of microglia and myeloid-derived suppressor cells (CD11b+Gr1+). Consequently, CIR abrogated M2-like immune polarization and enhanced the influx of CD8+ cells, generating an immunopermissive niche. We report that radiotherapy with carbon ions could surmount several central glioma resistance mechanisms by eradicating hypoxic and stem cell–like tumor cells, as well as modulating the glioma niche toward an antiangiogenic and less immunosuppressive state. Conclusively, potentially novel rationales for CIR in conquering glioma radioresistance are provided.

Authors

Sara Chiblak, Zili Tang, Dieter Lemke, Maximilian Knoll, Ivana Dokic, Rolf Warta, Mahmoud Moustafa, Walter Mier, Stephan Brons, Carmen Rapp, Stefan Muschal, Philipp Seidel, Martin Bendzsus, Sebastian Adeberg, Otmar D. Wiestler, Uwe Haberkorn, Jürgen Debus, Christel Herold-Mende, Wolfgang Wick, Amir Abdollahi

×

Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity
Ling Li, Hildur Knutsdottir, Ken Hui, Matthew J. Weiss, Jin He, Benjamin Philosophe, Andrew M. Cameron, Christopher L. Wolfgang, Timothy M. Pawlik, Gabriel Ghiaur, Andrew J. Ewald, Esteban Mezey, Joel S. Bader, Florin M. Selaru
Ling Li, Hildur Knutsdottir, Ken Hui, Matthew J. Weiss, Jin He, Benjamin Philosophe, Andrew M. Cameron, Christopher L. Wolfgang, Timothy M. Pawlik, Gabriel Ghiaur, Andrew J. Ewald, Esteban Mezey, Joel S. Bader, Florin M. Selaru
View: Text | PDF

Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity

  • Text
  • PDF
Abstract

Liver cancer is the fourth leading cause of cancer-related mortality and is distinguished by a relative paucity of chemotherapy options. It has been hypothesized that intratumor genetic heterogeneity may contribute to the high failure rate of chemotherapy. Here, we evaluated functional heterogeneity in a cohort of primary human liver cancer organoid lines. Each primary human liver cancer surgical specimen was used to generate multiple cancer organoid lines, obtained from distinct regions of the tumor. A total of 27 liver cancer lines were established and tested with 129 cancer drugs, generating 3,483 cell survival data points. We found a rich intratumor, functional (drug response) heterogeneity in our liver cancer patients. Furthermore, we established that the majority of drugs were either ineffective, or effective only in select organoid lines. In contrast, we found that a subset of drugs appeared pan-effective, displaying at least moderate activity in the majority of these cancer organoid lines. These drugs, which are FDA approved for indications other than liver cancers, deserve further consideration as either systemic or local therapeutics. Of note, molecular profiles, obtained for a reduced sample set, did not correlate with the drug response heterogeneity of liver cancer organoid lines. Taken together, these findings lay the foundation for in-depth studies of pan-effective drugs, as well as for functional personalized oncology approaches. Lastly, these functional studies demonstrate the utility of cancer organoid drug testing as part of a drug discovery pipeline.

Authors

Ling Li, Hildur Knutsdottir, Ken Hui, Matthew J. Weiss, Jin He, Benjamin Philosophe, Andrew M. Cameron, Christopher L. Wolfgang, Timothy M. Pawlik, Gabriel Ghiaur, Andrew J. Ewald, Esteban Mezey, Joel S. Bader, Florin M. Selaru

×

Frequent clonal relations between metastases and non-index prostate cancer lesions
Jeroen Kneppers, Oscar Krijgsman, Monique Melis, Jeroen de Jong, Daniel S. Peeper, Elise Bekers, Henk G. van der Poel, Wilbert Zwart, Andries M. Bergman
Jeroen Kneppers, Oscar Krijgsman, Monique Melis, Jeroen de Jong, Daniel S. Peeper, Elise Bekers, Henk G. van der Poel, Wilbert Zwart, Andries M. Bergman
View: Text | PDF

Frequent clonal relations between metastases and non-index prostate cancer lesions

  • Text
  • PDF
Abstract

Primary prostate cancer lesions are clonally heterogeneous and often arise independently. In contrast, metastases were reported to share a monoclonal background. Because prostate cancer mortality is the consequence of distant metastases, prevention of metastatic outgrowth by primary tumor ablation is the main focus of treatment for localized disease. Focal therapy is targeted ablation of the primary index lesion, but it is unclear whether remaining primary lesions metastasize at a later stage. In this study, we compared copy number aberration profiles of primary prostate cancer lesions with matching pelvic lymph node metastases of 30 patients to establish clonality between a lymph node metastasis and multiple primary lesions within the same patient. Interestingly, in 23.3% of the cases, the regional metastasis was not clonally linked to the index primary lesion. These findings suggest that focal ablation of only the index lesion is potentially an undertreatment of a significant proportion of prostate cancer patients.

Authors

Jeroen Kneppers, Oscar Krijgsman, Monique Melis, Jeroen de Jong, Daniel S. Peeper, Elise Bekers, Henk G. van der Poel, Wilbert Zwart, Andries M. Bergman

×
  • ← Previous
  • 1
  • 2
  • …
  • 48
  • 49
  • 50
  • …
  • 63
  • 64
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts