Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Oncology

  • 637 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 43
  • 44
  • 45
  • …
  • 63
  • 64
  • Next →
Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics
Jennifer M. Speth, Loka R. Penke, Joseph D. Bazzill, Kyung Soo Park, Rafael Gil de Rubio, Daniel J. Schneider, Hideyasu Ouchi, James J. Moon, Venkateshwar G. Keshamouni, Rachel L. Zemans, Vibha N. Lama, Douglas A. Arenberg, Marc Peters-Golden
Jennifer M. Speth, Loka R. Penke, Joseph D. Bazzill, Kyung Soo Park, Rafael Gil de Rubio, Daniel J. Schneider, Hideyasu Ouchi, James J. Moon, Venkateshwar G. Keshamouni, Rachel L. Zemans, Vibha N. Lama, Douglas A. Arenberg, Marc Peters-Golden
View: Text | PDF

Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics

  • Text
  • PDF
Abstract

Lung cancer remains the leading cause of cancer-related death in the United States. Although the alveolar macrophage (AM) comprises the major resident immune cell in the lung, few studies have investigated its role in lung cancer development. We recently discovered a potentially novel mechanism wherein AMs regulate STAT-induced inflammatory responses in neighboring epithelial cells (ECs) via secretion and delivery of suppressors of cytokine signaling 3 (SOCS3) within extracellular vesicles (EVs). Here, we explored the impact of SOCS3 transfer on EC tumorigenesis and the integrity of AM SOCS3 secretion during development of lung cancer. AM-derived EVs containing SOCS3 inhibited STAT3 activation as well as proliferation and survival of lung adenocarcinoma cells. Levels of secreted SOCS3 were diminished in lungs of patients with non–small cell lung cancer and in a mouse model of lung cancer, and the impaired ability of murine AMs to secrete SOCS3 within EVs preceded the development of lung tumors. Loss of this homeostatic brake on tumorigenesis prompted our effort to “rescue” it. Provision of recombinant SOCS3 loaded within synthetic liposomes inhibited proliferation and survival of lung adenocarcinoma cells in vitro as well as malignant transformation of normal ECs. Intratumoral injection of SOCS3 liposomes attenuated tumor growth in a lung cancer xenograft model. This work identifies AM-derived vesicular SOCS3 as an endogenous antitumor mechanism that is disrupted within the tumor microenvironment and whose rescue by synthetic liposomes can be leveraged as a potential therapeutic strategy for lung cancer.

Authors

Jennifer M. Speth, Loka R. Penke, Joseph D. Bazzill, Kyung Soo Park, Rafael Gil de Rubio, Daniel J. Schneider, Hideyasu Ouchi, James J. Moon, Venkateshwar G. Keshamouni, Rachel L. Zemans, Vibha N. Lama, Douglas A. Arenberg, Marc Peters-Golden

×

Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells
David M. Peereboom, Tyler J. Alban, Mathew M. Grabowski, Alvaro G. Alvarado, Balint Otvos, Defne Bayik, Gustavo Roversi, Mary McGraw, Pengjing Huang, Alireza M. Mohammadi, Harley I. Kornblum, Tomas Radivoyevitch, Manmeet S. Ahluwalia, Michael A. Vogelbaum, Justin D. Lathia
David M. Peereboom, Tyler J. Alban, Mathew M. Grabowski, Alvaro G. Alvarado, Balint Otvos, Defne Bayik, Gustavo Roversi, Mary McGraw, Pengjing Huang, Alireza M. Mohammadi, Harley I. Kornblum, Tomas Radivoyevitch, Manmeet S. Ahluwalia, Michael A. Vogelbaum, Justin D. Lathia
View: Text | PDF

Metronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cells

  • Text
  • PDF
Abstract

Background: Myeloid-derived suppressor cells (MDSCs) are elevated in glioblastoma (GBM) patient circulation, present in tumor tissue, and associated with poor prognosis. While low-dose chemotherapy reduces MDSCs in preclinical models, the use of this strategy to reduce MDSCs in GBM patients has yet to be evaluated. Methods: A phase 0/1 dose-escalation clinical trial was conducted in recurrent glioblastoma patients treated 5-7 days prior to surgery with low-dose chemotherapy via capecitabine followed by concomitant low-dose capecitabine and bevacizumab. Clinical outcomes, including progression-free and overall survival, were measured, along with safety and toxicity profiles. Over the treatment time course, circulating MDSC levels were measured by multi-parameter flow cytometry, and tumor tissue immune profiles were assessed via mass cytometry time-of-flight. Results: A total of 11 patients were enrolled across escalating dose cohorts of 150, 300, and 450 mg bid. No serious adverse events related to the drug combination were observed. Compared to pre-treatment baseline, circulating MDSCs were found to be higher after surgery in the 150 mg treatment arm and lower in the 300 mg and 450 mg treatment arms. Increased cytotoxic immune infiltration was observed after low-dose capecitabine compared to untreated GBM patients in the 300 mg and 450 mg treatment arms. Conclusions: Low-dose, metronomic capecitabine in combination with bevacizumab is well tolerated in GBM patients and was associated with a reduction in circulating MDSC levels and an increase in cytotoxic immune infiltration into the tumor microenvironment. Trial registration: NCT02669173

Authors

David M. Peereboom, Tyler J. Alban, Mathew M. Grabowski, Alvaro G. Alvarado, Balint Otvos, Defne Bayik, Gustavo Roversi, Mary McGraw, Pengjing Huang, Alireza M. Mohammadi, Harley I. Kornblum, Tomas Radivoyevitch, Manmeet S. Ahluwalia, Michael A. Vogelbaum, Justin D. Lathia

×

Enapotamab vedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer
Louise A. Koopman, Mikkel G. Terp, Gijs G. Zom, Maarten L. Janmaat, Kirstine Jacobsen, Elke Gresnigt - Van den Heuvel, Marcel Brandhorst, Ulf Forssmann, Frederik M. de Bree, Nora Pencheva, Andreas Lingnau, Maria A. Zipeto, Paul W.H.I. Parren, Esther C.W. Breij, Henrik J. Ditzel
Louise A. Koopman, Mikkel G. Terp, Gijs G. Zom, Maarten L. Janmaat, Kirstine Jacobsen, Elke Gresnigt - Van den Heuvel, Marcel Brandhorst, Ulf Forssmann, Frederik M. de Bree, Nora Pencheva, Andreas Lingnau, Maria A. Zipeto, Paul W.H.I. Parren, Esther C.W. Breij, Henrik J. Ditzel
View: Text | PDF

Enapotamab vedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer

  • Text
  • PDF
Abstract

Targeted therapies and immunotherapy have shown promise in patients with non-small cell lung cancer (NSCLC). However, the majority of patients fail or become resistant to treatment, emphasizing the need for novel treatments. In this study, we confirm the prognostic value of AXL levels in NSCLC and demonstrate potent anti-tumor activity of the AXL-targeting antibody-drug conjugate enapotamab vedotin across different NSCLC subtypes in a mouse clinical trial of human NSCLC. Tumor regression or stasis was observed in 17/61 (28%) of the PDX models, and was associated with AXL mRNA expression levels. Significant single agent activity of enapotamab vedotin was validated in vivo in 9 of 10 AXL-expressing NSCLC xenograft models. In a panel of EGFR-mutant NSCLC cell lines rendered resistant to EGFR inhibitors (EGFRi) in vitro, we observed de novo or increased AXL protein expression concomitant with enapotamab vedotin-mediated cytotoxicity. Enapotamab vedotin also showed anti-tumor activity in vivo in 3 EGFR-mutant, EGFRi-resistant PDX models, including an osimertinib-resistant NSCLC PDX model. In summary, enapotamab vedotin has promising therapeutic potential in NSCLC. The safety and preliminary efficacy of enapotamab vedotin are currently being evaluated in the clinic across multiple solid tumor types, including NSCLC.

Authors

Louise A. Koopman, Mikkel G. Terp, Gijs G. Zom, Maarten L. Janmaat, Kirstine Jacobsen, Elke Gresnigt - Van den Heuvel, Marcel Brandhorst, Ulf Forssmann, Frederik M. de Bree, Nora Pencheva, Andreas Lingnau, Maria A. Zipeto, Paul W.H.I. Parren, Esther C.W. Breij, Henrik J. Ditzel

×

MiR-16 regulates crosstalk in NF-kB tolerogenic inflammatory signaling between myeloma cells and bone marrow macrophages
Jihane Khalife, Jayeeta Ghose, Marianna Martella, Domenico Viola, Alberto Rocci, Estelle Troadec, Cesar Terrazas, Abhay R. Satoskar, Emine Gulsen Gunes, Ada Dona, James F. Sanchez, P. Leif Bergsagel, Marta Chesi, Alex Pozhitkov, Steven Rosen, Guido Marcucci, Jonathan J. Keats, Craig C. Hofmeister, Amrita Krishnan, Enrico Caserta, Flavia Pichiorri
Jihane Khalife, Jayeeta Ghose, Marianna Martella, Domenico Viola, Alberto Rocci, Estelle Troadec, Cesar Terrazas, Abhay R. Satoskar, Emine Gulsen Gunes, Ada Dona, James F. Sanchez, P. Leif Bergsagel, Marta Chesi, Alex Pozhitkov, Steven Rosen, Guido Marcucci, Jonathan J. Keats, Craig C. Hofmeister, Amrita Krishnan, Enrico Caserta, Flavia Pichiorri
View: Text | PDF

MiR-16 regulates crosstalk in NF-kB tolerogenic inflammatory signaling between myeloma cells and bone marrow macrophages

  • Text
  • PDF
Abstract

High levels of circulating miR-16 in the serum of multiple myeloma (MM) patients are independently associated with longer survival. Although the tumor suppressor function of intracellular miR-16 in cancer cells, including MM plasma cells (PCs), has been highly elucidated, its extracellular role in maintaining a non-supportive cancer microenvironment has not been fully explored. Here, we show that miR-16 can be actively secreted by MM cells through extracellular vesicles (EVs), and its extracellular and intracellular levels are directly correlated. We also show that EVs isolated from MM patients and from the conditioned media of MM-PCs can differentiate circulating monocytes to M2-tumor supportive macrophages (TAMs) and that the presence of higher levels of extracellular miR-16 counteracts this effect. In agreement with these observations, our data show that miR-16 directly targets the IKKα/β complex of the NF-kB canonical pathway, which is known to play a critical role in polarizing macrophages toward an M2 phenotype. By using a miR-15a-16-1 knockout mouse model, we also show that loss of the miR-16 cluster supports polarization to M2-macrophages. Finally, we demonstrate the therapeutic benefit of miR-16 overexpression in potentiating the anti-MM activity by a proteasome inhibitor in the presence of MM resident bone marrow TAM.

Authors

Jihane Khalife, Jayeeta Ghose, Marianna Martella, Domenico Viola, Alberto Rocci, Estelle Troadec, Cesar Terrazas, Abhay R. Satoskar, Emine Gulsen Gunes, Ada Dona, James F. Sanchez, P. Leif Bergsagel, Marta Chesi, Alex Pozhitkov, Steven Rosen, Guido Marcucci, Jonathan J. Keats, Craig C. Hofmeister, Amrita Krishnan, Enrico Caserta, Flavia Pichiorri

×

The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice
Marielle Breau, Amal Houssaini, Larissa Lipskaia, Shariq Abid, Emmanuelle Born, Elisabeth Marcos, Gabor Czibik, Aya Attwe, Delphine Beaulieu, Alberta Palazzo, Jean-Michel Flaman, Brigitte Bourachot, Guillaume Collin, Jeanne Tran Van Nhieu, David Bernard, Fatima Mechta-Grigoriou, Serge Adnot
Marielle Breau, Amal Houssaini, Larissa Lipskaia, Shariq Abid, Emmanuelle Born, Elisabeth Marcos, Gabor Czibik, Aya Attwe, Delphine Beaulieu, Alberta Palazzo, Jean-Michel Flaman, Brigitte Bourachot, Guillaume Collin, Jeanne Tran Van Nhieu, David Bernard, Fatima Mechta-Grigoriou, Serge Adnot
View: Text | PDF

The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice

  • Text
  • PDF
Abstract

Oxidative stress is a major contributor to chronic lung diseases. Antioxidants such as N-acetylcysteine (NAC) are broadly viewed as protective molecules that prevent the mutagenic effects of reactive oxygen species. Antioxidants may, however, increase the risk of some forms of cancer and accelerate lung cancer progression in murine models. Here, we investigated chronic NAC treatment in aging mice displaying lung oxidative stress and cell senescence due to inactivation of the transcription factor JunD, which is downregulated in diseased human lungs. NAC treatment decreased lung oxidative damage and cell senescence and protected from lung emphysema but concomitantly induced the development of lung adenocarcinoma in 50% of JunD-deficient mice and 10% of aged control mice. This finding constitutes the first evidence to our knowledge of a carcinogenic effect of antioxidant therapy in the lungs of aged mice with chronic lung oxidative stress and warrants the utmost caution when considering the therapeutic use of antioxidants.

Authors

Marielle Breau, Amal Houssaini, Larissa Lipskaia, Shariq Abid, Emmanuelle Born, Elisabeth Marcos, Gabor Czibik, Aya Attwe, Delphine Beaulieu, Alberta Palazzo, Jean-Michel Flaman, Brigitte Bourachot, Guillaume Collin, Jeanne Tran Van Nhieu, David Bernard, Fatima Mechta-Grigoriou, Serge Adnot

×

HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia
Jingyu Xiang, Daniel A. Rauch, Devra D. Huey, Amanda R. Panfil, Xiaogang Cheng, Alison K. Esser, Xinming Su, John C. Harding, Yalin Xu, Gregory C. Fox, Francesca Fontana, Takayuki Kobayashi, Junyi Su, Hemalatha Sundaramoorthi, Wing Hing Wong, Yizhen Jia, Thomas J. Rosol, Deborah J. Veis, Patrick L. Green, Stefan Niewiesk, Lee Ratner, Katherine N. Weilbaecher
Jingyu Xiang, Daniel A. Rauch, Devra D. Huey, Amanda R. Panfil, Xiaogang Cheng, Alison K. Esser, Xinming Su, John C. Harding, Yalin Xu, Gregory C. Fox, Francesca Fontana, Takayuki Kobayashi, Junyi Su, Hemalatha Sundaramoorthi, Wing Hing Wong, Yizhen Jia, Thomas J. Rosol, Deborah J. Veis, Patrick L. Green, Stefan Niewiesk, Lee Ratner, Katherine N. Weilbaecher
View: Text | PDF

HTLV-1 viral oncogene HBZ drives bone destruction in adult T cell leukemia

  • Text
  • PDF
Abstract

Osteolytic bone lesions and hypercalcemia are common, serious complications in adult T cell leukemia/lymphoma (ATL), an aggressive T cell malignancy associated with human T cell leukemia virus type 1 (HTLV-1) infection. The HTLV-1 viral oncogene HBZ has been implicated in ATL tumorigenesis and bone loss. In this study, we evaluated the role of HBZ on ATL-associated bone destruction using HTLV-1 infection and disease progression mouse models. Humanized mice infected with HTLV-1 developed lymphoproliferative disease and continuous, progressive osteolytic bone lesions. HTLV-1 lacking HBZ displayed only modest delays to lymphoproliferative disease but significantly decreased disease-associated bone loss compared with HTLV-1–infected mice. Gene expression array of acute ATL patient samples demonstrated increased expression of RANKL, a critical regulator of osteoclasts. We found that HBZ regulated RANKL in a c-Fos–dependent manner. Treatment of HTLV-1–infected humanized mice with denosumab, a monoclonal antibody against human RANKL, alleviated bone loss. Using patient-derived xenografts from primary human ATL cells to induce lymphoproliferative disease, we also observed profound tumor-induced bone destruction and increased c-Fos and RANKL gene expression. Together, these data show the critical role of HBZ in driving ATL-associated bone loss through RANKL and identify denosumab as a potential treatment to prevent bone complications in ATL patients.

Authors

Jingyu Xiang, Daniel A. Rauch, Devra D. Huey, Amanda R. Panfil, Xiaogang Cheng, Alison K. Esser, Xinming Su, John C. Harding, Yalin Xu, Gregory C. Fox, Francesca Fontana, Takayuki Kobayashi, Junyi Su, Hemalatha Sundaramoorthi, Wing Hing Wong, Yizhen Jia, Thomas J. Rosol, Deborah J. Veis, Patrick L. Green, Stefan Niewiesk, Lee Ratner, Katherine N. Weilbaecher

×

Targeting tumor-resident mast cells for effective anti-melanoma immune responses
Susanne Kaesler, Florian Wölbing, Wolfgang Eberhard Kempf, Yuliya Skabytska, Martin Köberle, Thomas Volz, Tobias Sinnberg, Teresa Amaral, Sigrid Möckel, Amir Yazdi, Gisela Metzler, Martin Schaller, Karin Hartmann, Benjamin Weide, Claus Garbe, Hans-Georg Rammensee, Martin Röcken, Tilo Biedermann
Susanne Kaesler, Florian Wölbing, Wolfgang Eberhard Kempf, Yuliya Skabytska, Martin Köberle, Thomas Volz, Tobias Sinnberg, Teresa Amaral, Sigrid Möckel, Amir Yazdi, Gisela Metzler, Martin Schaller, Karin Hartmann, Benjamin Weide, Claus Garbe, Hans-Georg Rammensee, Martin Röcken, Tilo Biedermann
View: Text | PDF

Targeting tumor-resident mast cells for effective anti-melanoma immune responses

  • Text
  • PDF
Abstract

Immune checkpoint blockade has revolutionized cancer treatment. Patients developing immune mediated adverse events, such as colitis, appear to particularly benefit from immune checkpoint inhibition. Yet, the contributing mechanisms are largely unknown. We identified a systemic LPS signature in melanoma patients with colitis following anti–cytotoxic T lymphocyte–associated antigen 4 (anti–CTLA-4) checkpoint inhibitor treatment and hypothesized that intestinal microbiota–derived LPS contributes to therapeutic efficacy. Because activation of immune cells within the tumor microenvironment is considered most promising to effectively control cancer, we analyzed human and murine melanoma for known sentinels of LPS. We identified mast cells (MCs) accumulating in and around melanomas and showed that effective melanoma immune control was dependent on LPS-activated MCs recruiting tumor-infiltrating effector T cells by secretion of CXCL10. Importantly, CXCL10 was also upregulated in human melanomas with immune regression and in patients with colitis induced by anti–CTLA-4 antibody. Furthermore, we demonstrate that CXCL10 upregulation and an MC signature at the site of melanomas are biomarkers for better patient survival. These findings provide conclusive evidence for a “Trojan horse treatment strategy” in which the plasticity of cancer-resident immune cells, such as MCs, is used as a target to boost tumor immune defense.

Authors

Susanne Kaesler, Florian Wölbing, Wolfgang Eberhard Kempf, Yuliya Skabytska, Martin Köberle, Thomas Volz, Tobias Sinnberg, Teresa Amaral, Sigrid Möckel, Amir Yazdi, Gisela Metzler, Martin Schaller, Karin Hartmann, Benjamin Weide, Claus Garbe, Hans-Georg Rammensee, Martin Röcken, Tilo Biedermann

×

YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma
Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya'an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying
Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya'an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying
View: Text | PDF

YAP1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma

  • Text
  • PDF
Abstract

Transcriptomic profiling classifies pancreatic ductal adenocarcinoma (PDAC) into several molecular subtypes with distinctive histological and clinical characteristics. However, little is known about the molecular mechanisms that define each subtype and their correlation with clinical outcome. Mutant KRAS is the most prominent driver in PDAC, present in over 90% of tumors, but the dependence of tumors on oncogenic KRAS signaling varies between subtypes. In particular, squamous subtype are relatively independent of oncogenic KRAS signaling and typically display much more aggressive clinical behavior versus progenitor subtype. Here, we identified that YAP1 activation is enriched in the squamous subtype and associated with poor prognosis. Activation of YAP1 in progenitor subtype cancer cells profoundly enhanced malignant phenotypes and transformed progenitor subtype cells into squamous subtype. Conversely, depletion of YAP1 specifically suppressed tumorigenicity of squamous subtype PDAC cells. Mechanistically, we uncovered a significant positive correlation between WNT5A expression and the YAP1 activity in human PDAC, and demonstrated that WNT5A overexpression led to YAP1 activation and recapitulated YAP1-dependent but Kras-independent phenotype of tumor progression and maintenance. Thus, our study identifies YAP1 oncogene as a major driver of squamous subtype PDAC and uncovers the role of WNT5A in driving PDAC malignancy through activation of the YAP pathway.

Authors

Bo Tu, Jun Yao, Sammy Ferri-Borgogno, Jun Zhao, Shujuan Chen, Qiuyun Wang, Liang Yan, Xin Zhou, Cihui Zhu, Seungmin Bang, Qing Chang, Christopher A. Bristow, Ya'an Kang, Hongwu Zheng, Huamin Wang, Jason B. Fleming, Michael Kim, Timothy P. Heffernan, Giulio F. Draetta, Duojia Pan, Anirban Maitra, Wantong Yao, Sonal Gupta, Haoqiang Ying

×

Efficient ADCC- killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK
Amber J. Giles, Shuyu Hao, Michelle R. Padget, Hua Song, Wei Zhang, John Lynes, Victoria E. Sanchez, Yang Liu, Jinkyu Jung, Xiaoyu Cao, Rika Fujii, Randy L. Jensen, David Gillespie, Jeffrey Schlom, Mark R. Gilbert, Edjah K. Nduom, Chunzhang Yang, John H. Lee, Patrick Soon-Shiong, James W. Hodge, Deric M. Park
Amber J. Giles, Shuyu Hao, Michelle R. Padget, Hua Song, Wei Zhang, John Lynes, Victoria E. Sanchez, Yang Liu, Jinkyu Jung, Xiaoyu Cao, Rika Fujii, Randy L. Jensen, David Gillespie, Jeffrey Schlom, Mark R. Gilbert, Edjah K. Nduom, Chunzhang Yang, John H. Lee, Patrick Soon-Shiong, James W. Hodge, Deric M. Park
View: Text | PDF

Efficient ADCC- killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK

  • Text
  • PDF
Abstract

Meningiomas are the most common adult primary tumor of the central nervous system, but there are no known effective medical therapies for recurrent meningioma, particularly for WHO grade II and III tumors. Meningiomas arise from the meninges, located outside the blood-brain barrier, and therefore may be directly targeted by antibody-mediated immunotherapy. We found that PD-L1 was highly expressed in multiple human malignant meningioma cell lines and patient tumor samples. PD-L1 was targeted with the anti-PD-L1 antibody avelumab and directed natural killer cells to mediate antibody-dependent cellular cytotoxicity (ADCC) of PD-L1-expressing meningioma tumors both in vitro and in vivo. ADCC of meningioma cells was significantly increased in target cells that upregulated PD-L1 expression and, conversely, abrogated in tumor cells that were depleted of PD-L1. Additionally, the high-affinity natural killer cell line, haNK, outperformed healthy donor NK cells in meningioma ADCC. Together, these data support a clinical trial designed to target PD-L1 with avelumab and haNK cells, potentially offering a novel immunotherapeutic approach for patients with malignant meningioma.

Authors

Amber J. Giles, Shuyu Hao, Michelle R. Padget, Hua Song, Wei Zhang, John Lynes, Victoria E. Sanchez, Yang Liu, Jinkyu Jung, Xiaoyu Cao, Rika Fujii, Randy L. Jensen, David Gillespie, Jeffrey Schlom, Mark R. Gilbert, Edjah K. Nduom, Chunzhang Yang, John H. Lee, Patrick Soon-Shiong, James W. Hodge, Deric M. Park

×

IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colon cancer
Qiong Li, Yali Chen, Daoxiang Zhang, Julie Grossman, Lin Li, Namrata Khurana, Hongmei Jiang, Patrick Grierson, John Herndon, David G. DeNardo, Grant A. Challen, Jingxia Liu, Marianna B. Ruzinova, Ryan C. Fields, Kian-Huat Lim
Qiong Li, Yali Chen, Daoxiang Zhang, Julie Grossman, Lin Li, Namrata Khurana, Hongmei Jiang, Patrick Grierson, John Herndon, David G. DeNardo, Grant A. Challen, Jingxia Liu, Marianna B. Ruzinova, Ryan C. Fields, Kian-Huat Lim
View: Text | PDF

IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colon cancer

  • Text
  • PDF
Abstract

Aberrant activation of the NF-κB transcription factors underlies chemoresistance in various cancer types including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IκB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited largely due to low specificity and toxicities of tested compounds. In solid cancers, the IKK kinases is driven predominantly by the Toll-like/Interlekin-1 receptor family members, which signal through the Interleukin-1 Receptor-Associated Kinases (IRAKs), with isoform 4 (or IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC has not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-κB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feedforward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression are associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC.

Authors

Qiong Li, Yali Chen, Daoxiang Zhang, Julie Grossman, Lin Li, Namrata Khurana, Hongmei Jiang, Patrick Grierson, John Herndon, David G. DeNardo, Grant A. Challen, Jingxia Liu, Marianna B. Ruzinova, Ryan C. Fields, Kian-Huat Lim

×
  • ← Previous
  • 1
  • 2
  • …
  • 43
  • 44
  • 45
  • …
  • 63
  • 64
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts