Drug refractory epilepsy (RE) is a chronic neurological disease with varied etiology that represents a group of patients whose seizures do not respond to anti-epileptic drugs. The immune system may have a role in seizure and epilepsy development, but the specific mechanisms of inflammation that lead to epileptogenesis and contribute to RE are unknown. Here, we used mass cytometry to comprehensively study the immune system of pediatric patients with RE and compared their immune profile and function with patients with age-matched autoimmune encephalitis (AIE) and healthy controls. Patients with RE and AIE displayed similar immune profiles overall, with changes in CD4+ and CD8+ T-cell subsets and an unbalance toward pro-inflammatory IL-17 production. In addition, patients with RE uniquely showed an altered balance in natural killer cell subsets. A systems level intercellular network analysis identified rewiring of the immune system leading to loss of inhibitory/regulatory intercellular connections and emergence of pro-inflammatory pathogenic functions in neuro-inflammatory immune-cell networks in patients with AIE and RE. These data underscore the contribution of systemic inflammation to the pathogenesis of seizures and epileptogenesis and have direct translational implications in advancing diagnostics and therapeutics design.
Pavanish Kumar, Derrick Wei Shih Chan, Amanda Lim, Bhairav Paleja, Simon Ling, Lai Li Yun, Su Li Poh, Adeline Ngoh, Thaschawee Arkachaisri, Joo Guan Yeo, Salvatore Albani
In demyelinating diseases such as Multiple Sclerosis (MS), demyelination of neuronal fibers impairs impulse conduction and causes axon degeneration. While neuronal activity stimulates oligodendrocyte production and myelination in normal conditions, it remains unclear whether the activity of demyelinated axons restores their loss-of-function in a harmful environment. To investigate this question, we established a model to induce a moderate optogenetic stimulation of demyelinated axons in the corpus callosum at the level of the motor cortex in which cortical circuit activation and locomotor effects were reduced in adult freely moving mice. We demonstrate that a moderate activation of demyelinated axons enhances the differentiation of oligodendrocyte precursor cells onto mature oligodendrocytes, but only under a repeated stimulation paradigm. This activity-dependent increase in the oligodendrocyte pool promotes an extensive remyelination and functional restoration of conduction, as revealed by ultrastructural analyses and compound action potential recordings. Our findings reveal the need of preserving an appropriate neuronal activity in the damaged tissue to promote oligodendrocyte differentiation and remyelination, likely by enhancing axon-oligodendroglia interactions. Our results provide new perspectives for translational research using neuromodulation in demyelinating diseases.
Fernando C. Ortiz, Chloé Habermacher, Mariana Graciarena, Pierre-Yves Houry, Akiko Nishiyama, Brahim Nait-Oumesmar, Maria Cecilia Angulo
TCR1640 mice, which have a T cell receptor (TCR) directed against MOG92–106, spontaneously develop experimental autoimmune encephalomyelitis. Female mice mostly develop a relapsing-remitting (RR) course and have a higher incidence of disease, while males most frequently suffer from progressive disease, reflecting the unresolved clinical sex discrepancies seen in multiple sclerosis. Herein, we performed adoptive transfers of male and female TCR1640 immune cells into WT animals to investigate if disease course is dependent on the sex of the donor immune cells or on the sex of the recipient animal. We found that transfer of female TCR1640 immune cells led to a RR disease while transfer of male TCR1640 immune cells led to a progressive course, independent of the sex of the recipient. In addition, regulatory and pathogenic T cell infiltration after transfer was also immune cell sex intrinsic. We performed genetic profiling of the donor immune cells and found significant differences between the transcriptomic profiles of male and female TCR1640 immune cells, interestingly, within genes related to immune regulation of T lymphocytes. These results suggest that differences in gene expression profiles related to regulation of T cell immunity seen in male and female neuroinflammatory disease drive relapsing versus progressive disease course.
Tessa Dhaeze, Catherine Lachance, Laurence Tremblay, Camille Grasmuck, Lyne Bourbonnière, Sandra Larouche, Olivia Saint-Laurent, Marc-André Lécuyer, Rose-Marie Rébillard, Stephanie Zandee, Alexandre Prat
The lack of intrinsic motivation to engage in, and adhere to, physical exercise has major health consequences. However, the neurobiological bases of exercise motivation are still unknown. This study aimed at examining whether the endocannabinoid system (ECS) is involved in this process. To do so, we developed an operant conditioning paradigm wherein mice unlocked a running wheel with nose pokes. Using pharmacological tools and conditional mutants for cannabinoid type-1 (CB1) receptors, we provide evidence that CB1 receptors located on GABAergic neurons are both necessary and sufficient to positively control running motivation. Conversely, this receptor population proved dispensable for the modulation of running duration per rewarded sequence. Although the ECS mediated the motivation for another reward, namely palatable food, such a regulation was independent from CB1 receptors on GABAergic neurons. In addition, we report that the lack of CB1 receptors on GABAergic neurons decreases the preference for running over palatable food when mice were proposed an exclusive choice between the two rewards. Beyond providing a paradigm that enables motivation processes for exercise to be dissected either singly or in concurrence, this study is the first to our knowledge to identify a neurobiological mechanism that might contribute to sedentary behavior.
Carolina Muguruza, Bastien Redon, Giulia R. Fois, Imane Hurel, Amandine Scocard, Claire Nguyen, Christopher Stevens, Edgar Soria-Gomez, Marjorie Varilh, Astrid Cannich, Justine Daniault, Arnau Busquets-Garcia, Teresa Pelliccia, Stéphanie Caillé, François Georges, Giovanni Marsicano, Francis Chaouloff
B-cells are key contributors to chronic autoimmune pathology in multiple sclerosis (MS). Clonally related B-cells exist in the cerebrospinal fluid (CSF), meninges, and central nervous system (CNS) parenchyma of MS patients. We sought to investigate the presence of clonally related B-cells over time by performing immunoglobulin heavy chain variable region repertoire sequencing on B-cells from longitudinally collected blood and CSF samples of MS patients (n=10). All patients were untreated at the time of the initial sampling; the majority (n=7) were treated with immune modulating therapies 1.2 (+/-0.3 SD) years later during the second sampling. We found clonal persistence of B-cells in the CSF of five patients; these B-cells were frequently immunoglobulin (Ig) class-switched and CD27+. We identified specific blood B-cell subsets that appear to provide input into CNS repertoires over time. We demonstrate complex patterns of clonal B-cell persistence in CSF and blood, even in patients on immune modulating therapy. Our findings support the concept that peripheral B-cell activation and CNS-compartmentalized immune mechanisms can in part therapy-resistant.
Ariele L. Greenfield, Ravi Dandekar, Akshaya Ramesh, Erica L. Eggers, Hao Wu, Sarah Laurent, William Harkin, Natalie S. Pierson, Martin S. Weber, Roland G. Henry, Antje Bischof, Bruce A.C. Cree, Stephen L. Hauser, Michael R. Wilson, H.-Christian von Büdingen
Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology, characterized by elevated intracranial pressure frequently manifesting with chronic headaches and visual loss. Similar to polycystic ovary syndrome (PCOS), IIH predominantly affects obese women of reproductive age. In this study, we comprehensively examined the systemic and cerebrospinal fluid (CSF) androgen metabolome in women with IIH in comparison to sex-, body mass index- and age-matched control groups with either simple obesity and PCOS, i.e. obesity and androgen excess. IIH women showed a pattern of androgen excess distinct to that observed in PCOS and simple obesity, with increased serum testosterone, and increased CSF testosterone and androstenedione. Human choroid plexus expressed the androgen receptor, alongside the androgen-activating enzyme aldoketoreductase type 1C3. We show that in a rat choroid plexus cell line testosterone significantly enhanced the activity of Na+/K+ ATPase, a surrogate of CSF secretion. We demonstrate that IIH patients have a unique signature of androgen excess and provide evidence that androgens can modulate CSF secretion via the choroid plexus. These findings implicate androgen excess as a potential causal driver and therapeutic target in IIH.
Michael W. O'Reilly, Connar S.J. Westgate, Catherine Hornby, Hannah Botfield, Angela E. Taylor, Keira Markey, James L. Mitchell, William J. Scotton, Susan P. Mollan, Andreas Yiangou, Carl Jenkinson, Lorna C. Gilligan, Mark Sherlock, James Gibney, Jeremy W. Tomlinson, Gareth G. Lavery, David J. Hodson, Wiebke Arlt, Alexandra J. Sinclair
The purpose of this study was to determine important genes, functions, and networks contributing to the pathobiology of cerebral cavernous malformation (CCM) from transcriptomic analyses across 3 species and 2 disease genotypes. Sequencing of RNA from laser microdissected neurovascular units of 5 human surgically resected CCM lesions, mouse brain microvascular endothelial cells, Caenorhabditis elegans with induced Ccm gene loss, and their respective controls provided differentially expressed genes (DEGs). DEGs from mouse and C. elegans were annotated into human homologous genes. Cross-comparisons of DEGs between species and genotypes, as well as network and gene ontology (GO) enrichment analyses, were performed. Among hundreds of DEGs identified in each model, common genes and 1 GO term (GO:0051656, establishment of organelle localization) were commonly identified across the different species and genotypes. In addition, 24 GO functions were present in 4 of 5 models and were related to cell-to-cell adhesion, neutrophil-mediated immunity, ion transmembrane transporter activity, and responses to oxidative stress. We have provided a comprehensive transcriptome library of CCM disease across species and for the first time to our knowledge in Ccm1/Krit1 versus Ccm3/Pdcd10 genotypes. We have provided examples of how results can be used in hypothesis generation or mechanistic confirmatory studies.
Janne Koskimäki, Romuald Girard, Yan Li, Laleh Saadat, Hussein A. Zeineddine, Rhonda Lightle, Thomas Moore, Seán Lyne, Kenneth Avner, Robert Shenkar, Ying Cao, Changbin Shi, Sean P. Polster, Dongdong Zhang, Julián Carrión-Penagos, Sharbel Romanos, Gregory Fonseca, Miguel A. Lopez-Ramirez, Eric M. Chapman, Evelyn Popiel, Alan T. Tang, Amy Akers, Pieter Faber, Jorge Andrade, Mark Ginsberg, W. Brent Derry, Mark L. Kahn, Douglas A. Marchuk, Issam A. Awad
Plexiform neurofibroma is a major contributor to morbidity in patients with neurofibromatosis type I (NF1). Macrophages and mast cells infiltrate neurofibroma, and data from mouse models implicate these leukocytes in neurofibroma development. Antiinflammatory therapy targeting these cell populations has been suggested as a means to prevent neurofibroma development. Here, we compare gene expression in Nf1-mutant nerves, which invariably form neurofibroma, and show disruption of neuron–glial cell interactions and immune cell infiltration to mouse models, which rarely progresses to neurofibroma with or without disruption of neuron–glial cell interactions. We find that the chemokine Cxcl10 is uniquely upregulated in NF1 mice that invariably develop neurofibroma. Global deletion of the CXCL10 receptor Cxcr3 prevented neurofibroma development in these neurofibroma-prone mice, and an anti–Cxcr3 antibody somewhat reduced tumor numbers. Cxcr3 expression localized to T cells and DCs in both inflamed nerves and neurofibromas, and Cxcr3 expression was necessary to sustain elevated macrophage numbers in Nf1-mutant nerves. To our knowledge, these data support a heretofore-unappreciated role for T cells and DCs in neurofibroma initiation.
Jonathan S. Fletcher, Jianqiang Wu, Walter J. Jessen, Jay Pundavela, Jacob A. Miller, Eva Dombi, Mi-Ok Kim, Tilat A. Rizvi, Kashish Chetal, Nathan Salomonis, Nancy Ratner
Intronic polymorphisms in the α-ketoglutarate–dependent dioxygenase gene (FTO) that are highly associated with increased body weight have been implicated in the transcriptional control of a nearby ciliary gene, retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Previous studies have shown that congenital Rpgrip1l hypomorphism in murine proopiomelanocortin (Pomc) neurons causes obesity by increasing food intake. Here, we show by congenital and adult-onset Rpgrip1l deletion in Pomc-expressing neurons that the hyperphagia and obesity are likely due to neurodevelopmental effects that are characterized by a reduction in the Pomc/Neuropeptide Y (Npy) neuronal number ratio and marked increases in arcuate hypothalamic–paraventricular hypothalamic (ARH-PVH) axonal projections. Biallelic RPGRIP1L mutations result in fewer cilia-positive human induced pluripotent stem cell–derived (iPSC-derived) neurons and blunted responses to Sonic Hedgehog (SHH). Isogenic human ARH-like embryonic stem cell–derived (ESc-derived) neurons homozygous for the obesity-risk alleles at rs8050136 or rs1421085 have decreased RPGRIP1L expression and have lower numbers of POMC neurons. RPGRIP1L overexpression increases POMC cell number. These findings suggest that apparently functional intronic polymorphisms affect hypothalamic RPGRIP1L expression and impact development of POMC neurons and their derivatives, leading to hyperphagia and increased adiposity.
Liheng Wang, Alain J. De Solis, Yossef Goffer, Kathryn E. Birkenbach, Staci E. Engle, Ross Tanis, Jacob M. Levenson, Xueting Li, Richard Rausch, Manika Purohit, Jen-Yi Lee, Jerica Tan, Maria Caterina De Rosa, Claudia A. Doege, Holly L. Aaron, Gabriela J. Martins, Jens C. Brüning, Dieter Egli, Rui Costa, Nicolas Berbari, Rudolph L. Leibel, George Stratigopoulos
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic inflammatory demyelinating and neurodegenerative diseases of the CNS. Although neurodegeneration is the major contributor to chronic disability in MS, mechanisms governing the viability of axons and neurons in MS and EAE remain elusive. Data indicate that activation of pancreatic endoplasmic reticulum kinase (PERK) influences, positively or negatively, neuron and axon viability in various neurodegenerative diseases through induction of ATF4. In this study, we demonstrate that the PERK pathway was activated in neurons during EAE. We found that neuron-specific PERK inactivation impaired EAE resolution and exacerbated EAE-induced axon degeneration, neuron loss, and demyelination. Surprisingly, neuron-specific ATF4 inactivation did not alter EAE disease course or EAE-induced axon degeneration, neuron loss, and demyelination. These results suggest that PERK activation in neurons protects axons and neurons against inflammation in MS and EAE through ATF4-independent mechanisms.
Sarrabeth Stone, Yuan Yue, Milos Stanojlovic, Shuangchan Wu, Gerard Karsenty, Wensheng Lin
No posts were found with this tag.