Systemic juvenile idiopathic arthritis (sJIA) begins with fever, rash, and high-grade systemic inflammation but commonly progresses to a persistent afebrile arthritis. The basis for this transition is unknown. To evaluate a role for lymphocyte polarization, we characterized T cells from patients with acute and chronic sJIA using flow cytometry, mass cytometry, and RNA sequencing. Acute and chronic sJIA each featured an expanded population of activated Tregs uncommon in healthy controls or in children with nonsystemic JIA. In acute sJIA, Tregs expressed IL-17A and a gene expression signature reflecting Th17 polarization. In chronic sJIA, the Th17 transcriptional signature was identified in T effector cells (Teffs), although expression of IL-17A at the protein level remained rare. Th17 polarization was abrogated in patients responding to IL-1 blockade. These findings identify evolving Th17 polarization in sJIA that begins in Tregs and progresses to Teffs, likely reflecting the impact of the cytokine milieu and consistent with a biphasic model of disease pathogenesis. The results support T cells as a potential treatment target in sJIA.
Lauren A. Henderson, Kacie J. Hoyt, Pui Y. Lee, Deepak A. Rao, A. Helena Jonsson, Jennifer P. Nguyen, Kayleigh Rutherford, Amélie M. Julé, Louis-Marie Charbonnier, Siobhan Case, Margaret H. Chang, Ezra M. Cohen, Fatma Dedeoglu, Robert C. Fuhlbrigge, Olha Halyabar, Melissa M. Hazen, Erin Janssen, Susan Kim, Jeffrey Lo, Mindy S. Lo, Esra Meidan, Mary Beth F. Son, Robert P. Sundel, Matthew L. Stoll, Chad Nusbaum, James A. Lederer, Talal A. Chatila, Peter A. Nigrovic
Neutrophil extracellular traps (NETs) promote inflammation and atherosclerosis progression. NETs are increased in diabetes and impair the resolution of inflammation during wound healing. Atherosclerosis resolution, a process resembling wound healing, is also impaired in diabetes. Thus, we hypothesized that NETs impede atherosclerosis resolution in diabetes by increasing plaque inflammation. Indeed, transcriptomic profiling of plaque macrophages from NET positive and negative areas in low-density lipoprotein receptor-deficient (Ldlr-/-) mice revealed inflammasome and glycolysis pathway upregulation, indicating a heightened inflammatory phenotype. We found that NETs decline during atherosclerosis resolution, which was induced by reducing hyperlipidemia in non-diabetic mice, but they persist in diabetes, exacerbating macrophage inflammation and impairing resolution. In diabetic mice deoxyribonuclease 1 (DNase1) treatment reduced plaque NETs content and macrophage inflammation, promoting atherosclerosis resolution after lipid-lowering. Given that humans with diabetes also exhibit impaired atherosclerosis resolution with lipid-lowering, these data suggest that NETs contribute to the increased cardiovascular disease risk in this population and are a potential therapeutic target.
Tatjana Josefs, Tessa J. Barrett, Emily J. Brown, Alexandra Quezada, Xiaoyun Wu, Maud Voisin, Jaume Amengual, Edward A. Fisher
C5a is a potent inflammatory mediator, which binds C5aR1 and C5aR2. Although pathogenic roles of C5a/C5aR1 axis in inflammatory disorders are well-documented, the roles for C5a/C5aR2 axis in inflammatory disorders and underlying mechanisms remain unclear. Here, we show that C5a/C5aR2 axis contributes to renal inflammation and tissue damage in a mouse model of acute pyelonephritis. Compared with WT littermates, C5ar2-/- mice had significantly reduced renal inflammation, tubular damage and renal bacterial load following bladder inoculation with uropathogenic E coli. The decrease in inflammatory responses in the kidney of C5ar2-/- mice was correlated with reduced intrarenal levels of high mobility group box 1 protein (HMGB1), NLRP3 inflammasome components, cleaved caspase-1 and IL-1β. In vitro, C5a stimulation of macrophages from C5ar1-/- mice (lacking C5aR1 but expressing C5aR2) led to significant upregulation of HMGB1 release, NLRP3/caspase-1 inflammasome activation and IL-1β secretion. Furthermore, blockade of HMGB1 significantly reduced C5a-mediated upregulation of NLRP3/caspase-1 inflammasome activation and IL-1β secretion in the macrophages, implying a HMGB1-dependent upregulation of NLRP3/caspase-1 inflammasome activation in macrophages. Our findings demonstrate a pathogenic role for C5a/C5aR2 axis in renal injury following renal infection and suggest that C5a/C5aR2 axis contributes to renal inflammation and tissue damage through up-regulation of HMGB1 and NLRP3/caspase-1 inflammasome.
Ting Zhang, Kun-yi Wu, Ning Ma, Lin-ling Wei, Malgorzata A. Garstka, Wuding Zhou, Ke Li
Immune checkpoint inhibitor (ICI) therapy has shown a significant benefit in the treatment of a variety of cancer entities. However, immune-related adverse events (irAEs) occur frequently and can lead to ICI treatment termination. MicroRNA-146a (miR-146a) has regulatory functions in immune cells. We observed that mice lacking miR-146a developed significantly more severe irAEs compared to wildtype mice in several irAE target organs in two different murine models. MiR-146a-/- mice exhibited increased T cell activation and effector function upon ICI treatment. Moreover, neutrophil numbers in the spleen and the inflamed intestine were highly increased in ICI-treated miR-146a-/- mice. Therapeutic administration of a miR-146a mimic reduced irAE severity. To validate our preclinical findings in patients, we analyzed the impact of a SNP in the MIR146A gene on irAE severity in 167 patients treated with ICIs. We found that the SNP rs2910164 leading to reduced miR-146a expression was associated with an increased risk to develop severe irAEs, reduced progression-free survival and increased neutrophil counts both at baseline and during ICI therapy.In conclusion, we characterized miR-146a as a novel molecular target to prevent ICI mediated autoimmune dysregulation. Furthermore, we identified the MIR146A SNP rs2910164 as a biomarker to predict severe irAE development in ICI-treated patients.
Dominik Marschner, Martina Falk, Nora Rebeka Javorniczky, Kathrin Hanke-Müller, Justyna Rawluk, Annette Schmitt-Graeff, Federico Simonetta, Eileen Haring, Severin Dicks, Manching Ku, Sandra Duquesne, Konrad Aumann, David Rafei-Shamsabadi, Frank Meiss, Patrick Marschner, Melanie Boerries, Robert S. Negrin, Justus Duyster, Robert Zeiser, Natalie Köhler
The blood hormone erythropoietin (EPO), upon binding to its receptor (EpoR), modulates high fat-diet (HFD)-induced obesity in mice, improves glucose tolerance, and prevents white adipose tissue inflammation. Transgenic mice with constitutive over-expression of human EPO solely in brain (Tg21) were used to assess the neuro-endocrine EPO effect without increasing the hematocrit. Male Tg21-mice resisted HFD-induced weight gain, showed lower serum ACTH, corticosterone and C-reactive protein levels, and prevented myeloid cell recruitment to hypothalamus compared with WT-males. HFD-induced hypothalamic inflammation (HI) and microglial activation were higher in male mice, and Tg21-males exhibited lower increase in HI than WT-males. Physiological EPO function in the brain also showed sexual dimorphism in regulating HFD response. Targeted deletion of EpoR gene expression in neuronal and glial cells worsened HFD-induced glucose intolerance in both male and female mice, but increased weight gain and HI in the hypothalamus in male mice only. Female estrogen production blocked reduced weight gain and HI. Both male and female Tg21-mice kept on normal-chow and HFD showed significantly improved glycemic control. Our data indicates that cerebral EPO regulates weight gain and HI in a sex-dependent response, distinct from EPO regulation of glycemic control, and independent of erythropoietic EPO response.
Soumyadeep Dey, Zhenzhong Cui, Oksana Gavrilova, XiaoJie Zhang, Max Gassmann, Constance T. Noguchi
A critical component of wound healing is the transition from the inflammatory phase to the proliferation phase to initiate healing and remodeling of the wound. Macrophages are critical for the initiation and resolution of the inflammatory phase during wound repair. In diabetes, macrophages display a sustained inflammatory phenotype in late wound healing characterized by elevated production of inflammatory cytokines such as TNFα. Previous studies have shown that an altered epigenetic program directs diabetic macrophages towards a pro-inflammatory phenotype contributing to a sustained inflammatory phase. Males absent on the first (MOF) is a histone acetyl-transferase (HAT) that has been shown be a co-activator of TNFα-signaling and promote NFκB-mediated gene transcription in prostate cancer cell lines. Based on MOFs role in TNFα/NFκB-mediated gene expression, we hypothesized that MOF influences macrophage-mediated inflammation during wound repair. We used a myeloid-specific Mof knockout (Lyz2Cre Moff/f) and diet-induced obese (DIO) mice, to determine the function of MOF in diabetic wound healing. MOF deficient mice exhibited reduced inflammatory cytokine gene expression. Furthermore, we found that wound macrophages from DIO mice had elevated MOF levels and higher levels of acetylated histone H4K16, MOFs primary substrate of HAT activity, on the promoters of inflammatory genes. We further identified that MOF expression could by stimulated by TNFα and that treatment with Etanercept, an FDA-approved TNFα inhibitor, reduced MOF levels and improved wound healing in DIO mice. This report is the first to define an important role for MOF in regulating macrophage-mediated inflammation in wound repair and identifies TNFα-inhibition as a potential therapy for the treatment of chronic inflammation in diabetic wounds.
Aaron D. denDekker, Frank M. Davis, Amrita D. Joshi, Sonya J. Wolf, Ronald Allen, Jay Lipinski, Brenda Nguyen, Joseph Kirma, Dylan Nycz, Jennifer R. Bermick, Bethany B. Moore, Johann E. Gudjonsson, Steven L. Kunkel, Katherine A. Gallagher
Vascular inflammation is present in many cardiovascular diseases, and exogenous glucocorticoids have traditionally been used as a therapy to suppress inflammation. However, recent data have shown that endogenous glucocorticoids, acting through the endothelial glucocorticoid receptor, act as negative regulators of inflammation. Here, we performed ChIP for the glucocorticoid receptor, followed by next-generation sequencing in mouse endothelial cells to investigate how the endothelial glucocorticoid receptor regulates vascular inflammation. We identified a role of the Wnt signaling pathway in this setting and show that loss of the endothelial glucocorticoid receptor results in upregulation of Wnt signaling both in vitro and in vivo using our validated mouse model. Furthermore, we demonstrate glucocorticoid receptor regulation of a key gene in the Wnt pathway, Frzb, via a glucocorticoid response element gleaned from our genomic data. These results suggest a role for endothelial Wnt signaling modulation in states of vascular inflammation.
Han Zhou, Sameet Mehta, Swayam Prakash Srivastava, Kariona Grabinska, Xinbo Zhang, Chris Wong, Ahmad Hedayat, Paola Perrotta, Carlos Fernández-Hernando, William C. Sessa, Julie E. Goodwin
Central poststroke pain (CPSP) is one of the neuropathic pain syndromes that can occur following stroke involving the somatosensory system. However, the underlying mechanism of CPSP remains largely unknown. Here, we established a CPSP mouse model by inducing a focal hemorrhage in the thalamic ventrobasal complex and confirmed the development of mechanical allodynia. In this model, microglial activation was observed in the somatosensory cortex, as well as in the injured thalamus. By using a CSF1 receptor inhibitor, we showed that microglial depletion effectively prevented allodynia development in our CPSP model. In the critical phase of allodynia development, c-fos–positive neurons increased in the somatosensory cortex, accompanied by ectopic axonal sprouting of the thalamocortical projection. Furthermore, microglial ablation attenuated both neuronal hyperactivity in the somatosensory cortex and circuit reorganization. These findings suggest that microglia play a crucial role in the development of CPSP pathophysiology by promoting sensory circuit reorganization.
Shin-ichiro Hiraga, Takahide Itokazu, Maki Hoshiko, Hironobu Takaya, Mariko Nishibe, Toshihide Yamashita
IL-17A plays a critical role in the pathogenesis of steroid-resistant neutrophilic airway inflammation, which is a hallmark of severe asthma and chronic obstructive pulmonary disease (COPD). Through RNA sequencing analysis of transcriptomes of human airway smooth muscle cells treated with IL-17A, dexamethasone (DEX, a synthetic glucocorticoid drug), alone or in combination, we identified a group of genes that are synergistically induced by IL-17A and DEX, including the neutrophil-promoting cytokine CSF3. In type-17 (Th17/IL-17Ahi) preclinical models of neutrophilic severe asthma (acute and chronic) and COPD, although DEX treatment was able to reduce the expression of neutrophil-mobilizing CXCL1 and CXCL2 in lung tissue, CSF3 expression was upregulated by DEX treatment. We found that DEX treatment alone failed to alleviate neutrophilic airway inflammation and pathology, and even exacerbated the disease phenotype when CSF3 was highly induced. Disruption of the IL-17A/DEX synergy by IL-17A inhibition with anti–IL-17A mAb or cyanidin-3-glucoside (C3G, a small-molecule IL-17A blocker) or depletion of CSF3 effectively rendered DEX sensitivity in type-17 preclinical models of neutrophilic airway diseases. Our study elucidates what we believe is a novel mechanism of steroid resistance in type-17 neutrophilic airway inflammation and offers an effective steroid-sparing therapeutic strategy (combined low-dose DEX and C3G) for treating neutrophilic airway diseases.
Suidong Ouyang, Caini Liu, Jianxin Xiao, Xing Chen, Andy C. Lui, Xiaoxia Li
Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently-discovered damage-associated molecular pattern. Understanding the precise mechanism by which it exacerbates inflammation is essential. Here we identified that eCIRP is a new biologically active endogenous ligand of triggering receptor expressed on myeloid cells-1 (TREM-1), fueling inflammation in sepsis. Surface plasmon resonance revealed a strong binding affinity between eCIRP and TREM-1, and FRET assay confirmed eCIRP’s interaction with TREM-1 in macrophages. Targeting TREM-1 by its siRNA or a decoy peptide LP17 or by using TREM-1-/- mice dramatically reduced eCIRP-induced inflammation. We developed a novel 7-aa peptide derived from human eCIRP, M3, which blocked the interaction of TREM-1 and eCIRP. M3 suppressed inflammation induced by eCIRP or agonist TREM-1 Ab crosslinking in murine macrophages or human peripheral blood monocytes. M3 also inhibited eCIRP-induced systemic inflammation and tissue injury. Treatment with M3 further protected mice from sepsis, improved acute lung injury, and increased survival. Thus, we have discovered a novel TREM-1 ligand and developed a new peptide M3 to block the eCIRP-TREM-1 interaction and improve the outcomes in sepsis.
Naomi-Liza Denning, Monowar Aziz, Atsushi Murao, Steven D. Gurien, Mahendar Ochani, Jose M. Prince, Ping Wang
No posts were found with this tag.