Gas flow is fundamental for driving tidal ventilation and thus the speed of lung motion, but current bias flow settings to support the preterm lung after birth are without an evidence base. We aimed to determine the role of gas bias flow rates to generate positive pressure ventilation in initiating early lung injury pathways in the preterm lamb. Using slower speeds to inflate the lung during tidal ventilation (gas flow rates 4-6 L/min) did not impact lung mechanics, mechanical power or gas exchange compared to those currently used in clinical practice (8-10 L/min). Speed of pressure and volume change during inflation were faster with higher flow rates. Lower flow rates resulted in less bronchoalveolar fluid protein, better lung morphology and fewer detached epithelial cells. Overall, relative to unventilated fetal controls, there was greater protein change using 8-10 L/min, which was associated with enrichment of acute inflammatory and innate responses. Slowing the speed of lung motion by supporting the preterm lung from birth with lower flow rates than currently used clinically resulted in less lung injury without compromising tidal ventilation or gas exchange.
David G. Tingay, Monique Fatmous, Kelly Kenna, Jack Chapman, Ellen Douglas, Arun Sett, Qi Hui Poh, Sophia I. Dahm, Tuyen Kim Quach, Magdy Sourial, Haoyun Fang, David W. Greening, Prue M. Pereira-Fantini
Thrombospondin-1 (TSP1) is a matricellular protein associated with the regulation of cell migration through direct binding interactions with integrin proteins and by associating with other receptors known to regulate integrin function, including CD47 and CD36. We previously demonstrated that deletion of an epithelial TSP1 receptor CD47 attenuates epithelial wound repair following intestinal mucosal injury. However, the mechanisms by which TSP1 contributes to intestinal mucosal repair remains poorly understood. Our results show upregulated TSP1 expression in colonic mucosal wounds and impaired intestinal mucosal wound healing in vivo upon intestinal epithelial specific loss of TSP1 (VillinCre/+Thbs1f/f or Thbs1ΔIEC). We report that exposure to exogenous TSP1 enhanced migration of IECs in a CD47– and TGFβ1-dependent manner, and that deficiency of TSP1 in primary murine colonic epithelial cells resulted in impaired wound healing. Mechanistically, TSP1 modulated epithelial actin cytoskeletal dynamics by suppression of RhoA activity, activation of Rac1, and changes in F-actin bundling. Overall, TSP1 was found to regulate intestinal mucosal wound healing via CD47 and TGFβ1, coordinate integrin-containing cell-matrix adhesion dynamics and remodel the actin cytoskeleton in migrating epithelial cells to enhance cell motility and promote wound repair.
Zachary S. Wilson, Arturo Raya-Sandino, Jael Miranda, Shuling Fan, Jennifer C. Brazil, Miguel Quiros, Vicky Garcia-Hernandez, Qingyang Liu, Chang H. Kim, Kurt D. Hankenson, Asma Nusrat, Charles A. Parkos
Alveolar macrophages (AMs) act as gatekeepers of the lung’s immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) Early Growth Response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA-sequencing, ATAC-sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes, and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmarker in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.
Zsuzsanna Kolostyak, Dora Bojcsuk, Viktoria Baksa, Zsuzsa Mathene Szigeti, Krisztian Bene, Zsolt Czimmerer, Pal Boto, Lina Fadel, Szilard Poliska, Laszlo Halasz, Petros Tzerpos, Wilhelm K. Berger, Andres Villabona-Rueda, Zsofia Varga, Tunde Kovacs, Andreas Patsalos, Attila Pap, György Vámosi, Peter Bai, Balazs Dezso, Matthew Spite, Franco R. D'Alessio, Istvan Szatmari, Laszlo Nagy
Neutrophils (polymorphonuclear leukocytes, PMNs) comprise a major component of the immune cell infiltrate during acute mucosal inflammation and have an important role in molding the inflammatory tissue environment. While PMNs are essential to clearance of invading microbes, the major PMN antimicrobial enzyme myeloperoxidase (MPO) can also promote bystander tissue damage. We hypothesized that blocking MPO would attenuate acute colitis and prevent the development of chronic colitis by limiting bystander tissue damage. Using the acute and chronic dextran sodium sulfate model of murine colitis, we demonstrated that MPO-deficient mice experienced less inflammation and more rapidly resolved colitis relative to wild-type controls. Mechanistic studies demonstrated that activated MPO disrupted intestinal epithelial barrier function through the dysregulation of the epithelial tight junction proteins. Our findings revealed that activated MPO chlorinates tyrosine within several tight junction proteins, thereby promoting tight junction mislocalization and dysfunction. These observations in cell models and in murine colitis were validated in human intestinal biopsies from individuals with ulcerative colitis and revealed a strong correlation between disease severity (Mayo score) and tissue chlorinated tyrosine levels. In summary, these findings implicate MPO as a viable therapeutic target to limit bystander tissue damage and preserve mucosal barrier function during inflammation.
Ian M. Cartwright, Liheng Zhou, Samuel D. Koch, Nichole Welch, Daniel Zakharov, Rosemary Callahan, Calen A. Steiner, Mark E. Gerich, Joseph C. Onyiah, Sean P. Colgan
Gain-of-function mutations in the dsDNA sensing adaptor STING lead to a severe autoinflammatory syndrome known as STING-associated vasculopathy with onset in Infancy (SAVI). SAVI patients develop interstitial lung disease (ILD) and produce autoantibodies that are commonly associated with systemic autoimmune diseases. Mice expressing the most common SAVI mutation STING V154M (VM) similarly develop ILD, but exhibit severe T and B cell lymphopenia, low serum Ig titers, and lack autoantibodies. Importantly, lethally irradiated VM hosts reconstituted with wildtype (WT) stem cells (WT→VM) still develop ILD. In this study, we find that WT→VM chimeras had restored B cell function, produced autoantibodies, and thereby recapitulated the loss of tolerance seen in SAVI patients. Lymphocytes derived from both WT and BCR or TCR transgenic (Tg) donors accumulated in the extravascular lung tissue of WT+Tg→VM mixed chimeras, but lymphocyte activation and germinal center formation required WT cells with a diverse repertoire. Furthermore, when T cells isolated from the WTVM chimeras were adoptively transferred to naïve Rag1-deficient 2º hosts, they trafficked to the lung and recruited neutrophils. Overall, these findings indicated that VM expression by radioresistant cells promoted the activation of autoreactive B cells and T cells that then differentiated into potentially pathogenic effector subsets.
Kevin MingJie Gao, Kristy Chiang, Sharon Subramanian, Xihui Yin, Paul J. Utz, Kerstin Nündel, Kate A. Fitzgerald, Ann Marshak-Rothstein
Carcinomas are common in humans but rare among closely related “great apes”. Plausible explanations, including human-specific genomic alterations affecting the biology of sialic acids are proposed, but causality remains unproven. Here, an integrated evolutionary genetics-phenome-transcriptome approach studied the role of SIGLEC12 gene (encodes Siglec-XII) on epithelial transformation and cancer. Exogenous expression of the protein in cell lines and genetically engineered mice recapitulated ~30% of the human population in whom the protein is expressed in a form that cannot bind ligand due to a fixed, homozygous, human-universal missense mutation. Siglec-XII null cells/mice recapitulated the remaining ~70% of the human population in whom an additional polymorphic frameshift mutation eliminates the entire protein. Siglec-XII expression drove several pro-oncogenic phenotypes in cell lines, and increased tumor burden in mice challenged with chemical carcinogen and inflammation. Transcriptomic studies yielded a 29-gene signature of Siglec-XII-positive disease and when used as a computational tool for navigating human datasets, pinpointed with surprising precision that SIGLEC12 expression (model) recapitulates a very specific type of colorectal carcinomas (disease) that is associated with mismatch-repair defects and inflammation, disproportionately affects European-Americans, and carries a better prognosis. They revealed a hitherto unknown evolutionary genetic mechanism for an ethnic/environmental predisposition of carcinogenesis.
Hector A. Cuello, Saptarshi Sinha, Andrea L. Verhagen, Nissi Varki, Ajit Varki, Pradipta Ghosh
Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.
Christopher O. Audu, Sonya J. Wolf, Amrita D. Joshi, Jadie Y. Moon, William J. Melvin, Sriganesh B. Sharma, Frank M. Davis, Andrea T. Obi, Rachel Wasikowski, Lam C. Tsoi, Emily C. Barrett, Kevin D. Mangum, Tyler M. Bauer, Steven L. Kunkel, Beth B. Moore, Katherine A. Gallagher
The diffuse axonal damage in white matter and neuronal loss, along with excessive neuroinflammation, hinder long-term functional recovery after traumatic brain injury (TBI). MicroRNAs (miRs) are small noncoding RNAs that negatively regulate protein-coding target genes in a posttranscriptional manner. Recent studies have shown that loss of function of the miR-15a/16-1 cluster reduced neurovascular damage and improved functional recovery in ischemic stroke and vascular dementia. However, the role of the miR-15a/16-1 cluster in neurotrauma is poorly explored. Here, we report that genetic deletion of the miR-15a/16-1 cluster facilitated the recovery of sensorimotor and cognitive functions, alleviated white matter/gray matter lesions, reduced cerebral glial cell activation, and inhibited infiltration of peripheral blood immune cells to brain parenchyma in a murine model of TBI when compared with WT controls. Moreover, intranasal delivery of the miR-15a/16-1 antagomir provided similar brain-protective effects conferred by genetic deletion of the miR-15a/16-1 cluster after experimental TBI, as evidenced by showing improved sensorimotor and cognitive outcomes, better white/gray matter integrity, and less inflammatory responses than the control antagomir–treated mice after brain trauma. miR-15a/16-1 genetic deficiency and miR-15a/16-1 antagomir also significantly suppressed inflammatory mediators in posttrauma brains. These results suggest miR-15a/16-1 as a potential therapeutic target for TBI.
Chao Zhou, Shun Li, Na Qiu, Ping Sun, Milton H. Hamblin, C. Edward Dixon, Jun Chen, Ke-Jie Yin
Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin–treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts “immune desert phenotypes” toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.
Lisa A. Ridnour, Robert Y.S. Cheng, Noemi Kedei, Veena Somasundaram, Dibyangana D. Bhattacharyya, Debashree Basudhar, Adelaide L. Wink, Abigail J. Walke, Caleb Kim, William F. Heinz, Elijah F. Edmondson, Donna O. Butcher, Andrew C. Warner, Tiffany H. Dorsey, Milind Pore, Robert J. Kinders, Stanley Lipkowitz, Richard J. Bryant, Jens Rittscher, Stephen T.C. Wong, Stephen M. Hewitt, Jenny C. Chang, Aliaa Shalaby, Grace M. Callagy, Sharon A. Glynn, Stefan Ambs, Stephen K. Anderson, Daniel W. McVicar, Stephen J. Lockett, David A. Wink
Pathological deposition and crosslinking of collagen type I by activated myofibroblasts drives progressive tissue fibrosis. Therapies that inhibit collagen synthesis have potential as anti-fibrotic agents. We identify the collagen chaperone cyclophilin B as a major cellular target of the natural product sanglifehrin A (SfA) using photo-affinity labeling and chemical proteomics. Mechanistically, SfA inhibits and induces the secretion of cyclophilin B from the endoplasmic reticulum (ER) and prevents TGF-β1–activated myofibroblasts from synthesizing and secreting collagen type I in vitro, without inducing ER stress, affecting collagen type I mRNA transcription, myofibroblast migration, contractility, or TGF-β1 signaling. In vivo, SfA induced cyclophilin B secretion in preclinical models of fibrosis, thereby inhibiting collagen synthesis from fibrotic fibroblasts and mitigating the development of lung and skin fibrosis in mice. Ex vivo, SfA induces cyclophilin B secretion and inhibits collagen type I secretion from fibrotic human lung fibroblasts and samples from patients with idiopathic pulmonary fibrosis (IPF). Taken together, we provide chemical, molecular, functional, and translational evidence for demonstrating direct anti-fibrotic activities of SfA in preclinical and human ex vivo fibrotic models. Our results identify the cellular target of SfA, the collagen chaperone cyclophilin B, as a mechanistic target for the treatment of organ fibrosis.
Hope A. Flaxman, Maria-Anna Chrysovergi, Hongwei Han, Farah Kabir, Rachael T. Lister, Chia-Fu Chang, Robert Yvon, Katharine E. Black, Andreas Weigert, Rajkumar Savai, Alejandro Egea-Zorrilla, Ana Pardo-Saganta, David Lagares, Christina M. Woo
No posts were found with this tag.