Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,131 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 94
  • 95
  • 96
  • …
  • 113
  • 114
  • Next →
Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model
Benjamin Y. Jin, Tracy E. Campbell, Lindsey M. Draper, Sanja Stevanović, Bianca Weissbrich, Zhiya Yu, Nicholas P. Restifo, Steven A. Rosenberg, Cornelia L. Trimble, Christian S. Hinrichs
Benjamin Y. Jin, Tracy E. Campbell, Lindsey M. Draper, Sanja Stevanović, Bianca Weissbrich, Zhiya Yu, Nicholas P. Restifo, Steven A. Rosenberg, Cornelia L. Trimble, Christian S. Hinrichs
View: Text | PDF

Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model

  • Text
  • PDF
Abstract

T cell receptor (TCR) T cell therapy is a promising cancer treatment modality. However, its successful development for epithelial cancers may depend on the identification of high-avidity TCRs directed against tumor-restricted target antigens. The human papillomavirus (HPV) E7 antigen is an attractive therapeutic target that is constitutively expressed by HPV+ cancers but not by healthy tissues. It is unknown if genetically engineered TCR T cells that target E7 can mediate regression of HPV+ cancers. We identified an HPV-16 E7-specific, HLA-A*02:01-restricted TCR from a uterine cervix biopsy from a woman with cervical intraepithelial neoplasia. This TCR demonstrated high functional avidity, with CD8 coreceptor–independent tumor targeting. Human T cells transduced to express the TCR specifically recognized and killed HPV-16+ cervical and oropharyngeal cancer cell lines and mediated regression of established HPV-16+ human cervical cancer tumors in a mouse model. These findings support the therapeutic potential of this approach and established the basis for an E7 TCR gene therapy clinical trial in patients with metastatic HPV+ cancers (NCT02858310).

Authors

Benjamin Y. Jin, Tracy E. Campbell, Lindsey M. Draper, Sanja Stevanović, Bianca Weissbrich, Zhiya Yu, Nicholas P. Restifo, Steven A. Rosenberg, Cornelia L. Trimble, Christian S. Hinrichs

×

CXCL10 stabilizes T cell–brain endothelial cell adhesion leading to the induction of cerebral malaria
Elizabeth W. Sorensen, Jeffrey Lian, Aleksandra J. Ozga, Yoshishige Miyabe, Sophina W. Ji, Shannon K. Bromley, Thorsten R. Mempel, Andrew D. Luster
Elizabeth W. Sorensen, Jeffrey Lian, Aleksandra J. Ozga, Yoshishige Miyabe, Sophina W. Ji, Shannon K. Bromley, Thorsten R. Mempel, Andrew D. Luster
View: Text | PDF

CXCL10 stabilizes T cell–brain endothelial cell adhesion leading to the induction of cerebral malaria

  • Text
  • PDF
Abstract

Malaria remains one of the world’s most significant human infectious diseases and cerebral malaria (CM) is its most deadly complication. CM pathogenesis remains incompletely understood, hindering the development of therapeutics to prevent this lethal complication. Elevated levels of the chemokine CXCL10 are a biomarker for CM, and CXCL10 and its receptor CXCR3 are required for experimental CM (ECM) in mice, but their role has remained unclear. Using multiphoton intravital microscopy, CXCR3 receptor– and ligand–deficient mice and bone marrow chimeric mice, we demonstrate a key role for endothelial cell–produced CXCL10 in inducing the firm adhesion of T cells and preventing their cell detachment from the brain vasculature. Using a CXCL9 and CXCL10 dual-CXCR3-ligand reporter mouse, we found that CXCL10 was strongly induced in the brain endothelium as early as 4 days after infection, while CXCL9 and CXCL10 expression was found in inflammatory monocytes and monocyte-derived DCs within the blood vasculature on day 8. The induction of both CXCL9 and CXCL10 was completely dependent on IFN-γ receptor signaling. These data demonstrate that IFN-γ–induced, endothelium-derived CXCL10 plays a critical role in mediating the T cell–endothelial cell adhesive events that initiate the inflammatory cascade that injures the endothelium and induces the development of ECM.

Authors

Elizabeth W. Sorensen, Jeffrey Lian, Aleksandra J. Ozga, Yoshishige Miyabe, Sophina W. Ji, Shannon K. Bromley, Thorsten R. Mempel, Andrew D. Luster

×

Whole-exome sequencing uncovers oxidoreductases DHTKD1 and OGDHL as linkers between mitochondrial dysfunction and eosinophilic esophagitis
Joseph D. Sherrill, Kiran KC, Xinjian Wang, Ting Wen, Adam Chamberlin, Emily M. Stucke, Margaret H. Collins, J. Pablo Abonia, Yanyan Peng, Qiang Wu, Philip E. Putnam, Phillip J. Dexheimer, Bruce J. Aronow, Leah C. Kottyan, Kenneth M. Kaufman, John B. Harley, Taosheng Huang, Marc E. Rothenberg
Joseph D. Sherrill, Kiran KC, Xinjian Wang, Ting Wen, Adam Chamberlin, Emily M. Stucke, Margaret H. Collins, J. Pablo Abonia, Yanyan Peng, Qiang Wu, Philip E. Putnam, Phillip J. Dexheimer, Bruce J. Aronow, Leah C. Kottyan, Kenneth M. Kaufman, John B. Harley, Taosheng Huang, Marc E. Rothenberg
View: Text | PDF

Whole-exome sequencing uncovers oxidoreductases DHTKD1 and OGDHL as linkers between mitochondrial dysfunction and eosinophilic esophagitis

  • Text
  • PDF
Abstract

Eosinophilic esophagitis (EoE) is an allergic inflammatory esophageal disorder with a complex underlying genetic etiology often associated with other comorbidities. Using whole-exome sequencing (WES) of 63 patients with EoE and 60 unaffected family members and family-based trio analysis, we sought to uncover rare coding variants. WES analysis identified 5 rare, damaging variants in dehydrogenase E1 and transketolase domain–containing 1 (DHTKD1). Rare variant burden analysis revealed an overabundance of putative, potentially damaging DHTKD1 mutations in EoE (P = 0.01). Interestingly, we also identified 7 variants in the DHTKD1 homolog oxoglutarate dehydrogenase-like (OGDHL). Using shRNA-transduced esophageal epithelial cells and/or patient fibroblasts, we further showed that disruption of normal DHTKD1 or OGDHL expression blunts mitochondrial function. Finally, we demonstrated that the loss of DHTKD1 expression increased ROS production and induced the expression of viperin, a gene previously shown to be involved in production of Th2 cytokines in T cells. Viperin had increased expression in esophageal biopsies of EoE patients compared with control individuals and was upregulated by IL-13 in esophageal epithelial cells. These data identify a series of rare genetic variants implicating DHTKD1 and OGDHL in the genetic etiology of EoE and underscore a potential pathogenic role for mitochondrial dysfunction in EoE.

Authors

Joseph D. Sherrill, Kiran KC, Xinjian Wang, Ting Wen, Adam Chamberlin, Emily M. Stucke, Margaret H. Collins, J. Pablo Abonia, Yanyan Peng, Qiang Wu, Philip E. Putnam, Phillip J. Dexheimer, Bruce J. Aronow, Leah C. Kottyan, Kenneth M. Kaufman, John B. Harley, Taosheng Huang, Marc E. Rothenberg

×

The inflammasome potentiates influenza/Staphylococcus aureus superinfection in mice
Keven M. Robinson, Krishnaveni Ramanan, Michelle E. Clay, Kevin J. McHugh, Matthew J. Pilewski, Kara L. Nickolich, Catherine Corey, Sruti Shiva, Jieru Wang, John F. Alcorn
Keven M. Robinson, Krishnaveni Ramanan, Michelle E. Clay, Kevin J. McHugh, Matthew J. Pilewski, Kara L. Nickolich, Catherine Corey, Sruti Shiva, Jieru Wang, John F. Alcorn
View: Text | PDF

The inflammasome potentiates influenza/Staphylococcus aureus superinfection in mice

  • Text
  • PDF
Abstract

Secondary bacterial respiratory infections are commonly associated with both acute and chronic lung injury. Influenza complicated by bacterial pneumonia is an effective model to study host defense during pulmonary superinfection due to its clinical relevance. Multiprotein inflammasomes are responsible for IL-1β production in response to infection and drive tissue inflammation. In this study, we examined the role of the inflammasome during viral/bacterial superinfection. We demonstrate that ASC–/– mice are protected from bacterial superinfection and produce sufficient quantities of IL-1β through an apoptosis-associated speck-like protein containing CARD (ASC) inflammasome–independent mechanism. Despite the production of IL-1β by ASC–/– mice in response to bacterial superinfection, these mice display decreased lung inflammation. A neutrophil elastase inhibitor blocked ASC inflammasome–independent production of IL-1β and the IL-1 receptor antagonist, anakinra, confirmed that IL-1 remains crucial to the clearance of bacteria during superinfection. Delayed inhibition of NLRP3 during influenza infection by MCC950 decreases bacterial burden during superinfection and leads to decreased inflammatory cytokine production. Collectively, our results demonstrate that ASC augments the clearance of bacteria, but can also contribute to inflammation and mortality. ASC should be considered as a therapeutic target to decrease morbidity and mortality during bacterial superinfection.

Authors

Keven M. Robinson, Krishnaveni Ramanan, Michelle E. Clay, Kevin J. McHugh, Matthew J. Pilewski, Kara L. Nickolich, Catherine Corey, Sruti Shiva, Jieru Wang, John F. Alcorn

×

IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy
Jianmin Zhu, Jin-Qing Liu, Min Shi, Xinhua Cheng, Miao Ding, Jianchao C. Zhang, Jonathan P. Davis, Sanjay Varikuti, Abhay R. Satoskar, Lanchun Lu, Xueliang Pan, Pan Zheng, Yang Liu, Xue-Feng Bai
Jianmin Zhu, Jin-Qing Liu, Min Shi, Xinhua Cheng, Miao Ding, Jianchao C. Zhang, Jonathan P. Davis, Sanjay Varikuti, Abhay R. Satoskar, Lanchun Lu, Xueliang Pan, Pan Zheng, Yang Liu, Xue-Feng Bai
View: Text | PDF

IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy

  • Text
  • PDF
Abstract

Tumor-induced expansion of Tregs is a significant obstacle to cancer immunotherapy. However, traditional approaches to deplete Tregs are often inefficient, provoking autoimmunity. We show here that administration of IL-27–expressing recombinant adeno-associated virus (AAV–IL-27) significantly inhibits tumor growth and enhances T cell responses in tumors. Strikingly, we found that AAV–IL-27 treatment causes rapid depletion of Tregs in peripheral blood, lymphoid organs, and — most pronouncedly — tumor microenvironment. AAV–IL-27–mediated Treg depletion is dependent on IL-27 receptor and Stat1 in Tregs and is a combined result of CD25 downregulation in Tregs and inhibition of IL-2 production by T cells. In combination with a GM-CSF vaccine, AAV–IL-27 treatment not only induced nearly complete tumor rejection, but also resulted in amplified neoantigen-specific T cell responses. AAV–IL-27 also dramatically increased the efficacy of anti–PD-1 therapy, presumably due to induction of PD-L1 in T cells and depletion of Tregs. Importantly, AAV–IL-27 therapy did not induce significant adverse events, partially due to its induction of IL-10. In a plasmacytoma mouse model, we found that IL-10 was required for AAV–IL-27–mediated tumor rejection. Thus, our study demonstrates the potential of AAV–IL-27 as an independent cancer therapeutic and as an efficient adjuvant for cancer immunotherapy.

Authors

Jianmin Zhu, Jin-Qing Liu, Min Shi, Xinhua Cheng, Miao Ding, Jianchao C. Zhang, Jonathan P. Davis, Sanjay Varikuti, Abhay R. Satoskar, Lanchun Lu, Xueliang Pan, Pan Zheng, Yang Liu, Xue-Feng Bai

×

Comprehensive immunoproteogenomic analyses of malignant pleural mesothelioma
Hyun-Sung Lee, Hee-Jin Jang, Jong Min Choi, Jun Zhang, Veronica Lenge de Rosen, Thomas M. Wheeler, Ju-Seog Lee, Thuydung Tu, Peter T. Jindra, Ronald H. Kerman, Sung Yun Jung, Farrah Kheradmand, David J. Sugarbaker, Bryan M. Burt
Hyun-Sung Lee, Hee-Jin Jang, Jong Min Choi, Jun Zhang, Veronica Lenge de Rosen, Thomas M. Wheeler, Ju-Seog Lee, Thuydung Tu, Peter T. Jindra, Ronald H. Kerman, Sung Yun Jung, Farrah Kheradmand, David J. Sugarbaker, Bryan M. Burt
View: Text | PDF

Comprehensive immunoproteogenomic analyses of malignant pleural mesothelioma

  • Text
  • PDF
Abstract

We generated a comprehensive atlas of the immunologic cellular networks within human malignant pleural mesothelioma (MPM) using mass cytometry. Data-driven analyses of these high-resolution single-cell data identified 2 distinct immunologic subtypes of MPM with vastly different cellular composition, activation states, and immunologic function; mass spectrometry demonstrated differential abundance of MHC-I and -II neopeptides directly identified between these subtypes. The clinical relevance of this immunologic subtyping was investigated with a discriminatory molecular signature derived through comparison of the proteomes and transcriptomes of these 2 immunologic MPM subtypes. This molecular signature, representative of a favorable intratumoral cell network, was independently associated with improved survival in MPM and predicted response to immune checkpoint inhibitors in patients with MPM and melanoma. These data additionally suggest a potentially novel mechanism of response to checkpoint blockade: requirement for high measured abundance of neopeptides in the presence of high expression of MHC proteins specific for these neopeptides.

Authors

Hyun-Sung Lee, Hee-Jin Jang, Jong Min Choi, Jun Zhang, Veronica Lenge de Rosen, Thomas M. Wheeler, Ju-Seog Lee, Thuydung Tu, Peter T. Jindra, Ronald H. Kerman, Sung Yun Jung, Farrah Kheradmand, David J. Sugarbaker, Bryan M. Burt

×

Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions
Valentin Voillet, Marcus Buggert, Chloe K. Slichter, Julia D. Berkson, Florian Mair, Mary M. Addison, Yoav Dori, Gregory Nadolski, Maxim G. Itkin, Raphael Gottardo, Michael R. Betts, Martin Prlic
Valentin Voillet, Marcus Buggert, Chloe K. Slichter, Julia D. Berkson, Florian Mair, Mary M. Addison, Yoav Dori, Gregory Nadolski, Maxim G. Itkin, Raphael Gottardo, Michael R. Betts, Martin Prlic
View: Text | PDF

Human MAIT cells exit peripheral tissues and recirculate via lymph in steady state conditions

  • Text
  • PDF
Abstract

Mucosal-associated invariant T cells (MAIT cells) recognize bacterial metabolites as antigen and are found in blood and tissues, where they are poised to contribute to barrier immunity. Recent data demonstrate that MAIT cells located in mucosal barrier tissues are functionally distinct from their blood counterparts, but the relationship and circulation of MAIT cells between blood and different tissue compartments remains poorly understood. Previous studies raised the possibility that MAIT cells do not leave tissue and may either be retained or undergo apoptosis. To directly address if human MAIT cells exit tissues, we collected human donor–matched thoracic duct lymph and blood and analyzed MAIT cell phenotype, transcriptome, and T cell receptor (TCR) diversity by flow cytometry and RNA sequencing. We found that MAIT cells were present in the lymph, despite being largely CCR7– in the blood, thus indicating that MAIT cells in the lymph migrated from tissues and were capable of exiting tissues to recirculate. Importantly, MAIT cells in the lymph and blood had highly overlapping clonotype usage but distinct transcriptome signatures, indicative of differential activation states.

Authors

Valentin Voillet, Marcus Buggert, Chloe K. Slichter, Julia D. Berkson, Florian Mair, Mary M. Addison, Yoav Dori, Gregory Nadolski, Maxim G. Itkin, Raphael Gottardo, Michael R. Betts, Martin Prlic

×

B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex
Caroline H. Wallace, Bill X. Wu, Mohammad Salem, Ephraim A. Ansa-Addo, Alessandra Metelli, Shaoli Sun, Gary Gilkeson, Mark J. Shlomchik, Bei Liu, Zihai Li
Caroline H. Wallace, Bill X. Wu, Mohammad Salem, Ephraim A. Ansa-Addo, Alessandra Metelli, Shaoli Sun, Gary Gilkeson, Mark J. Shlomchik, Bei Liu, Zihai Li
View: Text | PDF

B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex

  • Text
  • PDF
Abstract

GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell–independent antibody production. In contrast, B cell–specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell–dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.

Authors

Caroline H. Wallace, Bill X. Wu, Mohammad Salem, Ephraim A. Ansa-Addo, Alessandra Metelli, Shaoli Sun, Gary Gilkeson, Mark J. Shlomchik, Bei Liu, Zihai Li

×

Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas
Sören Müller, Sameer Agnihotri, Karsen E. Shoger, Max I. Myers, Nicholas Smith, Srilakshmi Chaparala, Clarence R. Villanueva, Ansuman Chattopadhyay, Adrian V. Lee, Lisa H. Butterfield, Aaron Diaz, Hideho Okada, Ian F. Pollack, Gary Kohanbash
Sören Müller, Sameer Agnihotri, Karsen E. Shoger, Max I. Myers, Nicholas Smith, Srilakshmi Chaparala, Clarence R. Villanueva, Ansuman Chattopadhyay, Adrian V. Lee, Lisa H. Butterfield, Aaron Diaz, Hideho Okada, Ian F. Pollack, Gary Kohanbash
View: Text | PDF

Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas

  • Text
  • PDF
Abstract

Low-grade gliomas (LGGs) are the most common brain tumor affecting children. We recently reported an early phase clinical trial of a peptide-based vaccine, which elicited consistent antigen-specific T cell responses in pediatric LGG patients. Additionally, we observed radiologic responses of stable disease (SD), partial response (PR), and near-complete/complete response (CR) following therapy. To identify biomarkers of clinical response in peripheral blood, we performed RNA sequencing on PBMC samples collected at multiple time points. Patients who showed CR demonstrated elevated levels of T cell activation markers, accompanied by a cytotoxic T cell response shortly after treatment initiation. At week 34, patients with CR demonstrated both IFN signaling and Poly-IC:LC adjuvant response patterns. Patients with PR demonstrated a unique, late monocyte response signature. Interestingly, HLA-V expression, before or during therapy, and an early monocytic hematopoietic response were strongly associated with SD. Finally, low IDO1 and PD-L1 expression before treatment and early elevated levels of T cell activation markers were associated with prolonged progression-free survival. Overall, our data support the presence of unique peripheral immune patterns in LGG patients associated with different radiographic responses to our peptide vaccine immunotherapy. Future clinical trials, including our ongoing phase II LGG vaccine immunotherapy, should monitor these response patterns.

Authors

Sören Müller, Sameer Agnihotri, Karsen E. Shoger, Max I. Myers, Nicholas Smith, Srilakshmi Chaparala, Clarence R. Villanueva, Ansuman Chattopadhyay, Adrian V. Lee, Lisa H. Butterfield, Aaron Diaz, Hideho Okada, Ian F. Pollack, Gary Kohanbash

×

Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes
Ciriana Orabona, Giada Mondanelli, Maria T. Pallotta, Agostinho Carvalho, Elisa Albini, Francesca Fallarino, Carmine Vacca, Claudia Volpi, Maria L. Belladonna, Maria G. Berioli, Giulia Ceccarini, Susanna M.R. Esposito, Raffaella Scattoni, Alberto Verrotti, Alessandra Ferretti, Giovanni De Giorgi, Sonia Toni, Marco Cappa, Maria C. Matteoli, Roberta Bianchi, Davide Matino, Alberta Iacono, Matteo Puccetti, Cristina Cunha, Silvio Bicciato, Cinzia Antognelli, Vincenzo N. Talesa, Lucienne Chatenoud, Dietmar Fuchs, Luc Pilotte, Benoît Van den Eynde, Manuel C. Lemos, Luigina Romani, Paolo Puccetti, Ursula Grohmann
Ciriana Orabona, Giada Mondanelli, Maria T. Pallotta, Agostinho Carvalho, Elisa Albini, Francesca Fallarino, Carmine Vacca, Claudia Volpi, Maria L. Belladonna, Maria G. Berioli, Giulia Ceccarini, Susanna M.R. Esposito, Raffaella Scattoni, Alberto Verrotti, Alessandra Ferretti, Giovanni De Giorgi, Sonia Toni, Marco Cappa, Maria C. Matteoli, Roberta Bianchi, Davide Matino, Alberta Iacono, Matteo Puccetti, Cristina Cunha, Silvio Bicciato, Cinzia Antognelli, Vincenzo N. Talesa, Lucienne Chatenoud, Dietmar Fuchs, Luc Pilotte, Benoît Van den Eynde, Manuel C. Lemos, Luigina Romani, Paolo Puccetti, Ursula Grohmann
View: Text | PDF

Deficiency of immunoregulatory indoleamine 2,3-dioxygenase 1 in juvenile diabetes

  • Text
  • PDF
Abstract

A defect in indoleamine 2,3-dioxygenase 1 (IDO1), which is responsible for immunoregulatory tryptophan catabolism, impairs development of immune tolerance to autoantigens in NOD mice, a model for human autoimmune type 1 diabetes (T1D). Whether IDO1 function is also defective in T1D is still unknown. We investigated IDO1 function in sera and peripheral blood mononuclear cells (PBMCs) from children with T1D and matched controls. These children were further included in a discovery study to identify SNPs in IDO1 that might modify the risk of T1D. T1D in children was characterized by a remarkable defect in IDO1 function. A common haplotype, associated with dysfunctional IDO1, increased the risk of developing T1D in the discovery and also confirmation studies. In T1D patients sharing such a common IDO1 haplotype, incubation of PBMCs in vitro with tocilizumab (TCZ) — an IL-6 receptor blocker — would, however, rescue IDO1 activity. In an experimental setting with diabetic NOD mice, TCZ was found to restore normoglycemia via IDO1-dependent mechanisms. Thus, functional SNPs of IDO1 are associated with defective tryptophan catabolism in human T1D, and maneuvers aimed at restoring IDO1 function would be therapeutically effective in at least a subgroup of T1D pediatric patients.

Authors

Ciriana Orabona, Giada Mondanelli, Maria T. Pallotta, Agostinho Carvalho, Elisa Albini, Francesca Fallarino, Carmine Vacca, Claudia Volpi, Maria L. Belladonna, Maria G. Berioli, Giulia Ceccarini, Susanna M.R. Esposito, Raffaella Scattoni, Alberto Verrotti, Alessandra Ferretti, Giovanni De Giorgi, Sonia Toni, Marco Cappa, Maria C. Matteoli, Roberta Bianchi, Davide Matino, Alberta Iacono, Matteo Puccetti, Cristina Cunha, Silvio Bicciato, Cinzia Antognelli, Vincenzo N. Talesa, Lucienne Chatenoud, Dietmar Fuchs, Luc Pilotte, Benoît Van den Eynde, Manuel C. Lemos, Luigina Romani, Paolo Puccetti, Ursula Grohmann

×
  • ← Previous
  • 1
  • 2
  • …
  • 94
  • 95
  • 96
  • …
  • 113
  • 114
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts