Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex
Caroline H. Wallace, Bill X. Wu, Mohammad Salem, Ephraim A. Ansa-Addo, Alessandra Metelli, Shaoli Sun, Gary Gilkeson, Mark J. Shlomchik, Bei Liu, Zihai Li
Caroline H. Wallace, Bill X. Wu, Mohammad Salem, Ephraim A. Ansa-Addo, Alessandra Metelli, Shaoli Sun, Gary Gilkeson, Mark J. Shlomchik, Bei Liu, Zihai Li
View: Text | PDF
Research Article Immunology

B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex

  • Text
  • PDF
Abstract

GARP, a cell surface docking receptor for binding and activating latent TGF-β, is highly expressed by platelets and activated Tregs. While GARP is implicated in immune invasion in cancer, the roles of the GARP-TGF-β axis in systemic autoimmune diseases are unknown. Although B cells do not express GARP at baseline, we found that the GARP-TGF-β complex is induced on activated human and mouse B cells by ligands for multiple TLRs, including TLR4, TLR7, and TLR9. GARP overexpression on B cells inhibited their proliferation, induced IgA class-switching, and dampened T cell–independent antibody production. In contrast, B cell–specific deletion of GARP-encoding gene Lrrc32 in mice led to development of systemic autoimmune diseases spontaneously as well as worsening of pristane-induced lupus-like disease. Canonical TGF-β signaling more readily upregulates GARP in Peyer patch B cells than in splenic B cells. Furthermore, we demonstrated that B cells are required for the induction of oral tolerance of T cell–dependent antigens via GARP. Our studies reveal for the first time to our knowledge that cell surface GARP-TGF-β is an important checkpoint for regulating B cell peripheral tolerance, highlighting a mechanism of autoimmune disease pathogenesis.

Authors

Caroline H. Wallace, Bill X. Wu, Mohammad Salem, Ephraim A. Ansa-Addo, Alessandra Metelli, Shaoli Sun, Gary Gilkeson, Mark J. Shlomchik, Bei Liu, Zihai Li

×

Full Text PDF

Download PDF (2.75 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts