The osteo-oto-hepato-enteric (O2HE) syndrome is a severe autosomal recessive disease ascribed to loss-of-function mutations in the Unc-45 myosin chaperone A (UNC45A) gene. The clinical spectrum includes bone fragility, hearing loss, cholestasis, and life-threatening diarrhea associated with microvillus inclusion disease–like enteropathy. Here, we present molecular and functional analysis of the UNC45A c.710T>C (p.Leu237Pro) missense variant, which revealed a unique pathogenicity compared with other genetic variants causing UNC45A deficiency. The UNC45A p.Leu237Pro mutant retained chaperone activity, prevented myosin aggregation, and supported proper nonmuscle myosin II (NMII) filament formation in patient fibroblasts and human osteosarcoma (U2OS) cells. However, the mutant formed atypically stable oligomers and prevented chaperone-myosin complex dissociation, thereby inhibiting NMII functions. Similar to biallelic UNC45A deficiency, this resulted in impaired intracellular trafficking, defective recycling, and abnormal retention of transferrin at various endocytic sites. In particular, coexpression of wild-type protein attenuated the pathogenic effects of the variant by inhibiting excessive oligomer formation. Our results elucidate the pathogenic mechanisms and recessive characteristics of this variant and may aid in the development of targeted therapies.
Stephanie Waich, Karin Kreidl, Julia Vodopiutz, Arzu Meltem Demir, Adam R. Pollio, Vojtěch Dostál, Kristian Pfaller, Marianna Parlato, Nadine Cerf-Bensussan, Rüdiger Adam, Georg F. Vogel, Holm H. Uhlig, Frank M. Ruemmele, Thomas Müller, Michael W. Hess, Andreas R. Janecke, Lukas A. Huber, Taras Valovka
Mitogen-activated protein kinase 8 interacting protein 3 (MAPK8IP3/JIP3) is a member of the kinesin family known to play a role in axonal transport of cargo. Mutations in the gene have been linked to severe neurodevelopmental disorders, resulting in developmental delay, intellectual disability, ataxia, tremor, autism, seizures, and visual impairment. A patient who has a missense mutation in the MAPK8IP3 gene (c. 1714 C>T, Arg578Cys) (R578C) manifests dystonia, gross motor delay and developmental delay. Here we show that the mutation is a toxic gain of function mutation which alters the interactome of JIP3, disrupts axonal transport of late endosomes, increases signaling via c-Jun N-terminal kinase (JNK), resulting in apoptosis, and disrupts the dopamine receptor 1 (D1) signaling while not affecting the dopamine receptor 2 (D2) signaling. Further, in the presence of the mutant protein, we show that 80% reduction of mutant JIP3>80% and 60% reduction of wild-type JIP3 by non-allele selective phosphorothioate (PS)-modified antisense oligonucleotides (ASOs) is well tolerated by several types of cells in vitro. Our study identifies several important new roles for JIP3 and provides important insights for therapeutic approaches, including antisense oligonucleotide reduction of JIP3.
Wei Zhang, Swapnil Mittal, Ria Thomas, Anahid Foroughishafiei, Ricardo Nunes Bastos, Wendy K. Chung, Konstantina Skourti-Stathaki, Stanley T. Crooke
Máté Sándor, Balázs Csaba Németh, Alexandra Demcsák, Miklós Sahin-Tóth
Mutations in the anoctamin5 (ANO5) gene can lead to musculoskeletal disorders, with monoallelic (autosomal dominant) mutations typically presenting as skeletal abnormalities known as Gnathodiaphyseal dysplasia (GDD). Clinically, GDD is characterized by thickened cortices of long bones and mandibles, narrowed medullary cavities, and increased bone fragility. While autophagy is necessary in regulating bone formation, the specific relationship between ANO5 and autophagy remains poorly understood. In this study, we demonstrated that Ano5 deficiency activates autophagy in mouse cranial osteoblasts (mCOBs), leading to enhanced osteogenic capacity in Ano5-/- mCOBs. The application of 3-Methyladenine (3-MA) and chloroquine (CQ) reversed the excessive osteogenesis observed in Ano5-/- mCOBs. Further analysis revealed that Ano5 deficiency upregulates the expression of ATG9A, and silencing ATG9A significantly reduces both autophagy and osteogenic activity in Ano5-/- mCOBs. Additionally, the AMP-activated protein kinase (AMPK) was found to regulate ATG9A positively, and inhibiting AMPK reduced ATG9A expression, which in turn mitigated excessive osteogenesis of Ano5-/- mCOBs. Moreover, in vivo experiments confirmed that treatment with 3-MA alleviates the bone phenotype abnormalities in Ano5-/- mice. These findings suggest that Ano5 negatively regulates autophagy, contributing to illuminate pathogenesis of GDD. Meanwhile, this research highlights potential therapeutic strategies targeting autophagy to pave the way for the clinical manifestations of GDD.
Shuai Zhang, Shengnan Wang, Sirui Liu, Xiu Liu, Mingyue Zhang, Huichong Xu, Xiaoyu Wang, Hongyu Li, Ying Hu
Mutations in the gap junction β2 (GJB2) gene, which encodes connexin 26, are the leading cause of genetic deafness. These mutations are characterized by the degeneration and fragmentation of gap junctions and gap junction plaques (GJPs) composed of connexin 26. Dominant-negative mutations of GJB2, such as R75W, cause syndromic hearing loss and palmoplantar keratoderma. We previously reported that the R75W mutation, a single-base substitution where C is replaced by T, causes fragmentation of GJPs. Therefore, an adenine base editor (ABE), which enables A-to-G base conversions, can potentially be useful for the treatment of this genetic disease. Here, we report that an all-in-one adeno-associated virus (AAV) vector, which includes a compact ABE (SaCas9-NNG-ABE8e) with broad targeting range, and a sgRNA targeting the R75W mutation in GJB2 corrected this pathogenic mutation and facilitated the recovery of the gap junction intercellular communication network of GJPs. In a transgenic mouse model with the GJB2 R75W mutation, AAV-mediated base editing also restored the fragmented GJPs to orderly outlines in cochlear supporting cells. Our findings suggest that an ABE-based base-editing strategy could be an optimal treatment for the dominant form of GJB2-related hearing loss, GJB2-related skin diseases, and other deafness-related mutations, especially single-base substitutions.
Takao Ukaji, Daisuke Arai, Harumi Tsutsumi, Ryoya Nakagawa, Fumihiko Matsumoto, Katsuhisa Ikeda, Osamu Nureki, Kazusaku Kamiya
Prader-Willi syndrome (PWS) is a multigenic disorder caused by the loss of seven contiguous paternally expressed genes. Mouse models with inactivation of all PWS genes are lethal. Knockout (KO) mouse models for each candidate gene have been generated, but they lack the functional interactions between PWS genes. Here, we revealed an interplay between Necdin and Magel2 “PWS” genes and generated a mouse model (named “Del Ndn-Magel2” mice) with a deletion including both genes. A subset of Del Ndn-Magel2 mice showed neonatal lethality. Behaviorally, surviving mutant mice exhibited sensory delays during infancy and alterations in social exploration at adulthood. Del Ndn-Magel2 mice had a lower body weight before weaning, persisting after weaning in males only, with reduced fat mass and improved glucose tolerance, and altered puberty. Adult mutant mice displayed increased ventilation and a persistent increase in apneas following a hypercapnic challenge. Transcriptomics analyses revealed a dysregulation of key circadian genes and alterations of genes associated with axonal function similar to PWS patients. At neuroanatomical levels, Del Ndn-Magel2 mice had an impaired maturation of oxytocin neurons and a disrupted development of melanocortin circuits. Together, these data indicate that the Del Ndn-Magel2 mouse is a pertinent and genetically relevant model of PWS
Pierre-Yves Barelle, Alicia Sicardi, Fabienne Schaller, Julie Buron, Denis Becquet, Felix Omnes, Françoise Watrin, Marie-Sophie Alifrangis, Catarina Santos, Clément Menuet, Anne-Marie François-Bellan, Emilie Caron, Jessica Klucznik, Vincent Prevot, Sebastien G. Bouret, Françoise Muscatelli
Leber hereditary optic neuropathy (LHON) is a paradigm for mitochondrial retinopathy due to mitochondrial DNA (mtDNA) mutations. However, the mechanism underlying retinal cell-specific effects of LHON-linked mtDNA mutations remains poorly understood and there has been no effective treatment or cure for this disorder. Using a mice model bearing a LHON-linked ND6P25L mutation, we demonstrated that the mutation caused retinal cell-specific deficiencies, especially in retinal ganglion cells (RGC), rods and Müller cells. Single-cell RNA sequencing revealed cell-specific dysregulation of oxidative phosphorylation and visual signaling pathways in the mutant retina. Strikingly, ND6 mutation-induced dysfunctions caused abnormal vitamin A (VA) metabolism essential for visual function. VA supplementation remarkably alleviated retinal deficiencies, including reduced fundus lesion and retinal thickness, and increasing numbers of RGCs, photoreceptors and Müller cell neurites. The restoration of visual functions with VA treatment were further evidenced by correcting dysregulations of phototransduction cascade and neurotransmitter transmission and restoring electrophysiological properties. Interestingly, VA supplementation markedly rescued the abnormal mitochondrial morphologies and functions in the mutant retina. These findings provide new insight into retina-specific pathophysiology of mitochondrial retinopathy arising from vitamin A deficiency and mitochondrial dysfunction induced by mtDNA mutation and step toward for therapeutic intervention for LHON and other mitochondrial retinopathy.
Cheng Ai, Huiying Li, Chunyan Wang, Yanchun Ji, Douglas C. Wallace, Junbin Qian, Yimin Zhu, Min-Xin Guan
HLA-DR genes are associated with the progression from stage 1 and stage 2 to onset of stage 3 type 1 diabetes (T1D), after accounting HLA-DQ genes with which they are in high linkage-disequilibrium. Based on an integrated cohort of participants from two completed clinical trials, this investigation finds that sharing a haplotype with the DRB1*03:01 (DR3) allele, DRB3*01:01:02 and *02:02:01 have respectively negative and positive associations with the progression. Further, we uncovered two residues (β11, β26, participating in pockets 6 and 4, respectively) on the DRB3 molecule responsible for the progression among DR3 carriers, i.e. motif RY and LF respectively delay and promote the progression (Hazard Ratio = 0.73 and 2.38, p-value = 0.039 and 0.017, respectively). Two anchoring pockets 6 and 4 probably bind differential autoantigenic epitopes. We further investigated the progression association with the motifs RY and LF among carriers of DR3 and found that carriers of the motif LF have significantly faster progression than carriers of RY (HR = 1.48 and p = 0.019 in unadjusted analysis; HR = 1.39, p = 0.047 in adjusted analysis). New insights provide an impetus to examine the possible role of specific DRB3-binding peptides in the progression to T1D.
Lue Ping Zhao, George K. Papadopoulos, Jay S. Skyler, William W. Kwok, George P. Bondinas, Antonis K. Moustakas, Ruihan Wang, Chul-Woo Pyo, Wyatt C. Nelson, Daniel E. Geraghty, Åke Lernmark
Craniosynostosis (CRS) is characterized by the development of abnormal cranial suture ossification and premature fusion. Despite the identification of several associated genetic disorders, the genetic determinants of CRS remain poorly understood. In this study, we conducted integrative analyses on 225 exomes, comprising 121 CRS probands and 104 parental exomes (52 trios). These analyses encompassed de novo and pathogenic variants, and digenic combinations within haploinsufficient genes harboring rare variants. Our analysis unveils a shared molecular network between genes associated with CRS and those linked to skeletal and neurodevelopmental disorders, with a notable enrichment of deleterious variants within haploinsufficient genes. Additionally, we identified a unique digenic pair (IL6ST and TRPS1) within haploinsufficient genes that was present in 2 patients with nonsyndromic CRS but absent in parents or 1,048 population controls. In vitro experiments provided evidence that the identified missense variants were hypomorphs, and accelerated bone mineralization could result from the additive effects of diminished IL6ST and TRPS1 activities in osteoblasts. Overall, our study underscores the important role of rare variations in haploinsufficient genes and suggests that in a subset of undiagnosed patients, the CRS phenotype may arise from multiple genetic variations.
Jung Woo Yu, Jihoon G. Yoon, Chaerim Han, Shin Hye Noh, Dong Min Shin, Yu-Mi Yang, Yong Oock Kim, Kyu-Won Shim, Min Goo Lee
BACKGROUND. 80% of patients with multiple endocrine neoplasia type 1 (MEN1) develop duodenopancreatic neuroendocrine tumors (dpNETs), of whom, 15% to 25% die of metastasis. There is a need to identify biomarkers to predict aggressive disease. MEN1 genotype affords an attractive possibility as a biomarker as it remains constant during lifetime. Currently, patients are clinically diagnosed with MEN1 by the presence of ≥ 2 primary endocrine tumors (pituitary, parathyroid and pancreas) or ≥ 1 primary endocrine tumor(s) with a positive family history. 10-30% of patients diagnosed clinically with MEN1 have no pathogenic germline MEN1 variants. METHODS. Retrospective study of 162 index patients or probands with genotype-positive and 47 with genotype-negative MEN1 enrolled from 1977–2022. RESULTS. Compared to patients with genotype-negative disease, patients with genotype-positive disease were younger at diagnosis and had an increased frequency of recurrent parathyroid tumors, dpNETs and angiofibromas or collagenomas. We propose a novel weighted scoring system to diagnose genotype-positive MEN1 based on clinical characteristics. No evidence of MEN1 mosaicism was seen in 30 tumors from 17 patients with genotype-negative MEN1. Patients with germline MEN1 variants in exons 2 and 3 have a reduced risk of distant metastases. CONCLUSIONS. The clinical course of genotype-negative MEN1 is distinct from genotype-positive disease raising uncertainty about the benefits of lifetime surveillance inpatients with genotype-negative disease. MEN1 mosaicism is rare. TRIAL REGISTRATION. ClinicalTrials.gov NCT04969926. FUNDING. Intramural Research Program of NIDDK (ZIA DK043006-46).
Charlita C. Worthy, Rana Tora, Chandra N. Uttarkar, James M. Welch, Lynn Bliss, Craig Cochran, Anisha Ninan, Sheila Kumar, Stephen Wank, Sungyoung Auh, Lee S. Weinstein, William F. Simonds, Sunita K. Agarwal, Jenny E. Blau, Smita Jha
No posts were found with this tag.