Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 3,976 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 91
  • 92
  • 93
  • …
  • 397
  • 398
  • Next →
Stress-enhanced cardiac lncRNA Morrbid protects hearts from acute myocardial infarction
Yang Yu, … , Xiaobin Wang, Chunxiang Zhang
Yang Yu, … , Xiaobin Wang, Chunxiang Zhang
Published July 11, 2023
Citation Information: JCI Insight. 2023;8(16):e165568. https://doi.org/10.1172/jci.insight.165568.
View: Text | PDF

Stress-enhanced cardiac lncRNA Morrbid protects hearts from acute myocardial infarction

  • Text
  • PDF
Abstract

Myeloid RNA regulator of Bim-induced death (Morrbid) is a newly identified leukocyte-specific long noncoding RNA (lncRNA). However, the expression and biological functions of Morrbid in cardiomyocytes and heart disease are currently unclear. This study was meant to determine the role of cardiac Morrbid in acute myocardial infarction (AMI) and to identify the potential cellular and molecular mechanisms involved. We found that both human and mouse cardiomyocytes could express a significant amount of Morrbid and that its expression was increased in cardiomyocytes with hypoxia or oxidative stress as well as in mouse hearts with AMI. Overexpression of Morrbid reduced the myocardial infarct size and cardiac dysfunction, whereas the infarct size and cardiac dysfunction deteriorated in cardiomyocyte-specific Morrbid-KO (Morrbidfl/fl/Myh6-Cre) mice. We identified that Morrbid had a protective effect against hypoxia- or H2O2-induced apoptosis; this was also confirmed in vivo in mouse hearts after AMI. We further discovered that serpine1 was a direct target gene of Morrbid that was involved in the Morrbid-mediated protective effect on cardiomyocytes. In summary, we have found, for the first time to our knowledge, that the cardiac Morrbid is a stress-enhanced lncRNA that protects hearts from AMI via antiapoptosis through its target gene serpine1. Morrbid may be a novel promising therapeutic target for ischemic heart diseases such as AMI.

Authors

Yang Yu, Haiqiong Yang, Qiuting Li, Nianhui Ding, Jiali Gao, Gan Qiao, Jianguo Feng, Xin Zhang, Jianming Wu, Yajun Yu, Xiangyu Zhou, Xiaobin Wang, Chunxiang Zhang

×

Pansclerotic morphea is characterized by IFN-γ responses priming dendritic cell fibroblast crosstalk to promote fibrosis
Enze Xing, … , Johann E. Gudjonsson, Dinesh Khanna
Enze Xing, … , Johann E. Gudjonsson, Dinesh Khanna
Published July 20, 2023
Citation Information: JCI Insight. 2023;8(16):e171307. https://doi.org/10.1172/jci.insight.171307.
View: Text | PDF

Pansclerotic morphea is characterized by IFN-γ responses priming dendritic cell fibroblast crosstalk to promote fibrosis

  • Text
  • PDF
Abstract

Pansclerotic morphea (PSM) is a rare, devastating disease characterized by extensive soft tissue fibrosis, secondary contractions, and significant morbidity. PSM pathogenesis is unknown, and aggressive immunosuppressive treatments rarely slow disease progression. We aimed to characterize molecular mechanisms driving PSM and to identify therapeutically targetable pathways by performing single-cell and spatial RNA-Seq on 7 healthy controls and on lesional and nonlesional skin biopsies of a patient with PSM 12 months apart. We then validated our findings using immunostaining and in vitro approaches. Fibrotic skin was characterized by prominent type II IFN response, accompanied by infiltrating myeloid cells, B cells, and T cells, which were the main IFN-γ source. We identified unique CXCL9+ fibroblasts enriched in PSM, characterized by increased chemokine expression, including CXCL9, CXCL10, and CCL2. CXCL9+ fibroblasts were related to profibrotic COL8A1+ myofibroblasts, which had enriched TGF-β response. In vitro, TGF-β and IFN-γ synergistically increased CXCL9 and CXCL10 expression, contributing to the perpetuation of IFN-γ responses. Furthermore, cell-to-cell interaction analyses revealed cDC2B DCs as a key communication hub between CXCL9+ fibroblasts and COL8A1+ myofibroblasts. These results define PSM as an inflammation-driven condition centered on type II IFN responses. This work identified key pathogenic circuits between T cells, cDC2Bs, and myofibroblasts, and it suggests that JAK1/2 inhibition is a potential therapeutic option in PSM.

Authors

Enze Xing, Feiyang Ma, Rachael Wasikowski, Allison C. Billi, Mehrnaz Gharaee-Kermani, Jennifer Fox, Craig Dobry, Amanda Victory, Mrinal K. Sarkar, Xianying Xing, Olesya Plazyo, Henry W. Chen, Grant Barber, Heidi Jacobe, Pei-Suen Tsou, Robert L. Modlin, John Varga, J. Michelle Kahlenberg, Lam C. Tsoi, Johann E. Gudjonsson, Dinesh Khanna

×

Glutathione limits RUNX2 oxidation and degradation to regulate bone formation
Guoli Hu, … , Guo-Fang Zhang, Courtney M. Karner
Guoli Hu, … , Guo-Fang Zhang, Courtney M. Karner
Published July 11, 2023
Citation Information: JCI Insight. 2023;8(16):e166888. https://doi.org/10.1172/jci.insight.166888.
View: Text | PDF

Glutathione limits RUNX2 oxidation and degradation to regulate bone formation

  • Text
  • PDF
Abstract

Reactive oxygen species (ROS) are natural products of mitochondrial oxidative metabolism and oxidative protein folding. ROS levels must be well controlled, since elevated ROS has been shown to have deleterious effects on osteoblasts. Moreover, excessive ROS is thought to underlie many of the skeletal phenotypes associated with aging and sex steroid deficiency in mice and humans. The mechanisms by which osteoblasts regulate ROS and how ROS inhibits osteoblasts are not well understood. Here, we demonstrate that de novo glutathione (GSH) biosynthesis is essential in neutralizing ROS and establish a proosteogenic reduction and oxidation reaction (REDOX) environment. Using a multifaceted approach, we demonstrate that reducing GSH biosynthesis led to acute degradation of RUNX2, impaired osteoblast differentiation, and reduced bone formation. Conversely, reducing ROS using catalase enhanced RUNX2 stability and promoted osteoblast differentiation and bone formation when GSH biosynthesis was limited. Highlighting the therapeutic implications of these findings, in utero antioxidant therapy stabilized RUNX2 and improved bone development in the Runx2+/– haplo-insufficient mouse model of human cleidocranial dysplasia. Thus, our data establish RUNX2 as a molecular sensor of the osteoblast REDOX environment and mechanistically clarify how ROS negatively impacts osteoblast differentiation and bone formation.

Authors

Guoli Hu, Yilin Yu, Deepika Sharma, Shondra M. Pruett-Miller, Yinshi Ren, Guo-Fang Zhang, Courtney M. Karner

×

Bariatric surgery improves postprandial VLDL kinetics and restores insulin-mediated regulation of hepatic VLDL production
Vehpi Yildirim, … , Natal A.W. van Riel, Geesje M. Dallinga-Thie
Vehpi Yildirim, … , Natal A.W. van Riel, Geesje M. Dallinga-Thie
Published July 11, 2023
Citation Information: JCI Insight. 2023;8(16):e166905. https://doi.org/10.1172/jci.insight.166905.
View: Text | PDF

Bariatric surgery improves postprandial VLDL kinetics and restores insulin-mediated regulation of hepatic VLDL production

  • Text
  • PDF
Abstract

Dyslipidemia in obesity results from excessive production and impaired clearance of triglyceride-rich (TG-rich) lipoproteins, which are particularly pronounced in the postprandial state. Here, we investigated the impact of Roux-en-Y gastric bypass (RYGB) surgery on postprandial VLDL1 and VLDL2 apoB and TG kinetics and their relationship with insulin-responsiveness indices. Morbidly obese patients without diabetes who were scheduled for RYGB surgery (n = 24) underwent a lipoprotein kinetics study during a mixed-meal test and a hyperinsulinemic-euglycemic clamp study before the surgery and 1 year later. A physiologically based computational model was developed to investigate the impact of RYGB surgery and plasma insulin on postprandial VLDL kinetics. After the surgery, VLDL1 apoB and TG production rates were significantly decreased, whereas VLDL2 apoB and TG production rates remained unchanged. The TG catabolic rate was increased in both VLDL1 and VLDL2 fractions, but only the VLDL2 apoB catabolic rate tended to increase. Furthermore, postsurgery VLDL1 apoB and TG production rates, but not those of VLDL2, were positively correlated with insulin resistance. Insulin-mediated stimulation of peripheral lipoprotein lipolysis was also improved after the surgery. In summary, RYGB resulted in reduced hepatic VLDL1 production that correlated with reduced insulin resistance, elevated VLDL2 clearance, and improved insulin sensitivity in lipoprotein lipolysis pathways.

Authors

Vehpi Yildirim, Kasper W. ter Horst, Pim W. Gilijamse, Dewi van Harskamp, Henk Schierbeek, Hans Jansen, Alinda W.M. Schimmel, Max Nieuwdorp, Albert K. Groen, Mireille J. Serlie, Natal A.W. van Riel, Geesje M. Dallinga-Thie

×

Proline is increased in allergic asthma and promotes airway remodeling
Tingting Xu, … , Mao Huang, Ningfei Ji
Tingting Xu, … , Mao Huang, Ningfei Ji
Published July 11, 2023
Citation Information: JCI Insight. 2023;8(16):e167395. https://doi.org/10.1172/jci.insight.167395.
View: Text | PDF

Proline is increased in allergic asthma and promotes airway remodeling

  • Text
  • PDF
Abstract

Proline and its synthesis enzyme pyrroline-5-carboxylate reductase 1 (PYCR1) are implicated in epithelial-mesenchymal transition (EMT), yet how proline and PYCR1 function in allergic asthmatic airway remodeling via EMT has not yet been addressed to our knowledge. In the present study, increased levels of plasma proline and PYCR1 were observed in patients with asthma. Similarly, proline and PYCR1 in lung tissues were high in a murine allergic asthma model induced by house dust mites (HDMs). Pycr1 knockout decreased proline in lung tissues, with reduced airway remodeling and EMT. Mechanistically, loss of Pycr1 restrained HDM-induced EMT by modulating mitochondrial fission, metabolic reprogramming, and the AKT/mTORC1 and WNT3a/β-catenin signaling pathways in airway epithelial cells. Therapeutic inhibition of PYCR1 in wild-type mice disrupted HDM-induced airway inflammation and remodeling. Deprivation of exogenous proline relieved HDM-induced airway remodeling to some extent. Collectively, this study illuminates that proline and PYCR1 involved with airway remodeling in allergic asthma could be viable targets for asthma treatment.

Authors

Tingting Xu, Zhenzhen Wu, Qi Yuan, Xijie Zhang, Yanan Liu, Chaojie Wu, Meijuan Song, Jingjing Wu, Jingxian Jiang, Zhengxia Wang, Zhongqi Chen, Mingshun Zhang, Mao Huang, Ningfei Ji

×

Metabolic heterogeneity in adrenocortical carcinoma impacts patient outcomes
Qian Wang, … , Matthias Kroiss, Axel Walch
Qian Wang, … , Matthias Kroiss, Axel Walch
Published August 22, 2023
Citation Information: JCI Insight. 2023;8(16):e167007. https://doi.org/10.1172/jci.insight.167007.
View: Text | PDF

Metabolic heterogeneity in adrenocortical carcinoma impacts patient outcomes

  • Text
  • PDF
Abstract

Spatially resolved metabolomics enables the investigation of tumoral metabolites in situ. Inter- and intratumor heterogeneity are key factors associated with patient outcomes. Adrenocortical carcinoma (ACC) is an exceedingly rare tumor associated with poor survival. Its clinical prognosis is highly variable, but the contributions of tumor metabolic heterogeneity have not been investigated thus far to our knowledge. An in-depth understanding of tumor heterogeneity requires molecular feature-based identification of tumor subpopulations associated with tumor aggressiveness. Here, using spatial metabolomics by high–mass resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry imaging, we assessed metabolic heterogeneity by de novo discovery of metabolic subpopulations and Simpson’s diversity index. After identification of tumor subpopulations in 72 patients with ACC, we additionally performed a comparison with 25 tissue sections of normal adrenal cortex to identify their common and unique metabolic subpopulations. We observed variability of ACC tumor heterogeneity and correlation of high metabolic heterogeneity with worse clinical outcome. Moreover, we identified tumor subpopulations that served as independent prognostic factors and, furthermore, discovered 4 associated anticancer drug action pathways. Our research may facilitate comprehensive understanding of the biological implications of tumor subpopulations in ACC and showed that metabolic heterogeneity might impact chemotherapy.

Authors

Qian Wang, Na Sun, Raphael Meixner, Ronan Le Gleut, Thomas Kunzke, Annette Feuchtinger, Jun Wang, Jian Shen, Stefan Kircher, Ulrich Dischinger, Isabel Weigand, Felix Beuschlein, Martin Fassnacht, Matthias Kroiss, Axel Walch

×

Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD
Li-Chao Fan, … , Jin-Fu Xu, Suzanne M. Cloonan
Li-Chao Fan, … , Jin-Fu Xu, Suzanne M. Cloonan
Published August 22, 2023
Citation Information: JCI Insight. 2023;8(16):e163403. https://doi.org/10.1172/jci.insight.163403.
View: Text | PDF

Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD

  • Text
  • PDF
Abstract

Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid–containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.

Authors

Li-Chao Fan, Keith McConn, Maria Plataki, Sarah Kenny, Niamh C. Williams, Kihwan Kim, Jennifer A. Quirke, Yan Chen, Maor Sauler, Matthias E. Möbius, Kuei-Pin Chung, Estela Area Gomez, Augustine M.K. Choi, Jin-Fu Xu, Suzanne M. Cloonan

×

HSPB2 facilitates neural regeneration through autophagy for sensorimotor recovery after traumatic brain injury
Yichen Huang, … , Zhi-Xiang Xu, Yanqin Gao
Yichen Huang, … , Zhi-Xiang Xu, Yanqin Gao
Published August 22, 2023
Citation Information: JCI Insight. 2023;8(16):e168919. https://doi.org/10.1172/jci.insight.168919.
View: Text | PDF

HSPB2 facilitates neural regeneration through autophagy for sensorimotor recovery after traumatic brain injury

  • Text
  • PDF
Abstract

Autophagy is a promising target for promoting neural regeneration, which is essential for sensorimotor recovery following traumatic brain injury (TBI). Whether neuronal heat shock protein B2 (HSPB2), a small molecular heat shock protein, reduces injury and promotes recovery following TBI remains unclear. In this study, we demonstrated that HSPB2 was significantly increased in the neurons of a TBI mouse model, patients, and primary neuron cultures subjected to oxygen/glucose deprivation and reperfusion treatment. Upon creating a tamoxifen-induced neuron-specific HSPB2 overexpression transgenic mouse model, we found that elevated HSPB2 levels promoted long-term sensorimotor recovery and alleviated tissue loss after TBI. We also demonstrated that HSPB2 enhanced white matter structural and functional integrity, promoted central nervous system (CNS) plasticity, and accelerated long-term neural remodeling. Moreover, we found that autophagy occurred around injured brain tissues in patients, and the pro-regenerative effects of HSPB2 relied on its autophagy-promoting function. Mechanistically, HSPB2 may regulate autophagy possibly by forming the HSPB2/BCL2-associated athanogene 3/sequestosome-1 complex to facilitate the clearance of erroneously accumulated proteins in the axons. Treatment with the autophagy inhibitor chloroquine during the acute stage or delayed induction of HSPB2 remarkably impeded HSPB2’s long-term reparative function, indicating the importance of acute-stage autophagy in long-term neuro-regeneration. Our findings highlight the beneficial role of HSPB2 in neuro-regeneration and functional recovery following acute CNS injury, thereby emphasizing the therapeutic potential of autophagy regulation for enhancing neuro-regeneration.

Authors

Yichen Huang, Shan Meng, Biwu Wu, Hong Shi, Yana Wang, Jiakun Xiang, Jiaying Li, Ziyu Shi, Gang Wu, Yanchen Lyu, Xu Jia, Jin Hu, Zhi-Xiang Xu, Yanqin Gao

×

Proteogenomic identification of an immunogenic antigen derived from human endogenous retrovirus in renal cell carcinoma
Shin Kobayashi, … , Takayuki Kanaseki, Toshihiko Torigoe
Shin Kobayashi, … , Takayuki Kanaseki, Toshihiko Torigoe
Published August 22, 2023
Citation Information: JCI Insight. 2023;8(16):e167712. https://doi.org/10.1172/jci.insight.167712.
View: Text | PDF

Proteogenomic identification of an immunogenic antigen derived from human endogenous retrovirus in renal cell carcinoma

  • Text
  • PDF
Abstract

CD8+ T cells can recognize tumor antigens displayed by HLA class I molecules and eliminate tumor cells. Despite their low tumor mutation burden, immune checkpoint blockade (ICB) is often beneficial in patients with renal cell carcinoma (RCC). Here, using a proteogenomic approach, we directly and comprehensively explored the HLA class I–presenting peptidome of RCC tissues and demonstrated that the immunopeptidomes contain a small subset of peptides derived from human endogenous retroviruses (hERV). A comparison between tumor and normal kidney tissues revealed tumor-associated hERV antigens, one of which was immunogenic and recognized by host tumor-infiltrating lymphocytes (TIL). Stimulation with the hERV antigen induced reactive CD8+ T cells in healthy donor–derived (HD-derived) peripheral blood mononuclear cells (PBMC). These results highlight the presence of antitumor CD8+ T cell surveillance against hERV3895 antigens, suggesting their clinical applications in patients with RCC.

Authors

Shin Kobayashi, Serina Tokita, Keigo Moniwa, Katsuyuki Kitahara, Hiromichi Iuchi, Kazuhiko Matsuo, Hidehiro Kakizaki, Takayuki Kanaseki, Toshihiko Torigoe

×

Species-specific roles for the MAFA and MAFB transcription factors in regulating islet β cell identity
Jeeyeon Cha, … , Yuval Dor, Roland Stein
Jeeyeon Cha, … , Yuval Dor, Roland Stein
Published August 22, 2023
Citation Information: JCI Insight. 2023;8(16):e166386. https://doi.org/10.1172/jci.insight.166386.
View: Text | PDF

Species-specific roles for the MAFA and MAFB transcription factors in regulating islet β cell identity

  • Text
  • PDF
Abstract

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet β cells, characterized by inappropriate production of other islet cell–enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in β cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human β cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D β cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human β cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non–β cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional β cell signature.

Authors

Jeeyeon Cha, Xin Tong, Emily M. Walker, Tehila Dahan, Veronica A. Cochrane, Sudipta Ashe, Ronan Russell, Anna B. Osipovich, Alex M. Mawla, Min Guo, Jin-hua Liu, Zachary A. Loyd, Mark O. Huising, Mark A. Magnuson, Matthias Hebrok, Yuval Dor, Roland Stein

×
  • ← Previous
  • 1
  • 2
  • …
  • 91
  • 92
  • 93
  • …
  • 397
  • 398
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts