Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 3,976 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 74
  • 75
  • 76
  • …
  • 397
  • 398
  • Next →
CRISPR screening identifies BET and mTOR inhibitor synergy in cholangiocarcinoma through serine glycine one carbon
Yan Zhu, … , Traver Hart, Lawrence N. Kwong
Yan Zhu, … , Traver Hart, Lawrence N. Kwong
Published December 7, 2023
Citation Information: JCI Insight. 2024;9(2):e174220. https://doi.org/10.1172/jci.insight.174220.
View: Text | PDF

CRISPR screening identifies BET and mTOR inhibitor synergy in cholangiocarcinoma through serine glycine one carbon

  • Text
  • PDF
Abstract

Patients with cholangiocarcinoma have poor clinical outcomes due to late diagnoses, poor prognoses, and limited treatment strategies. To identify drug combinations for this disease, we have conducted a genome-wide CRISPR screen anchored on the bromodomain and extraterminal domain (BET) PROTAC degrader ARV825, from which we identified anticancer synergy when combined with genetic ablation of members of the mTOR pathway. This combination effect was validated using multiple pharmacological BET and mTOR inhibitors, accompanied by increased levels of apoptosis and cell cycle arrest. In a xenograft model, combined BET degradation and mTOR inhibition induced tumor regression. Mechanistically, the 2 inhibitor classes converged on H3K27ac-marked epigenetic suppression of the serine glycine one carbon (SGOC) metabolism pathway, including the key enzymes PHGDH and PSAT1. Knockdown of PSAT1 was sufficient to replicate synergy with single-agent inhibition of either BET or mTOR. Our results tie together epigenetic regulation, metabolism, and apoptosis induction as key therapeutic targets for further exploration in this underserved disease.

Authors

Yan Zhu, Dengyong Zhang, Pooja Shukla, Young-Ho Jung, Prit Benny Malgulwar, Sharmeen Chagani, Medina Colic, Sarah Benjamin, John A. Copland III, Lin Tan, Philip L. Lorenzi, Milind Javle, Jason T. Huse, Jason Roszik, Traver Hart, Lawrence N. Kwong

×

An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes
Farzad Asadi, … , Roland E. Dolle, David W. Piston
Farzad Asadi, … , Roland E. Dolle, David W. Piston
Published January 23, 2024
Citation Information: JCI Insight. 2024;9(2):e172626. https://doi.org/10.1172/jci.insight.172626.
View: Text | PDF

An orally available compound suppresses glucagon hypersecretion and normalizes hyperglycemia in type 1 diabetes

  • Text
  • PDF
Abstract

Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.

Authors

Farzad Asadi, Subhadra C. Gunawardana, Roland E. Dolle, David W. Piston

×

Urine proteomic signatures of histological class, activity, chronicity, and treatment response in lupus nephritis
Andrea Fava, … , the Accelerating Medicines Partnership in RA/SLE network, Michelle Petri
Andrea Fava, … , the Accelerating Medicines Partnership in RA/SLE network, Michelle Petri
Published January 23, 2024
Citation Information: JCI Insight. 2024;9(2):e172569. https://doi.org/10.1172/jci.insight.172569.
View: Text | PDF

Urine proteomic signatures of histological class, activity, chronicity, and treatment response in lupus nephritis

  • Text
  • PDF
Abstract

Lupus nephritis (LN) is a pathologically heterogenous autoimmune disease linked to end-stage kidney disease and mortality. Better therapeutic strategies are needed as only 30%–40% of patients completely respond to treatment. Noninvasive biomarkers of intrarenal inflammation may guide more precise approaches. Because urine collects the byproducts of kidney inflammation, we studied the urine proteomic profiles of 225 patients with LN (573 samples) in the longitudinal Accelerating Medicines Partnership in RA/SLE cohort. Urinary biomarkers of monocyte/neutrophil degranulation (i.e., PR3, S100A8, azurocidin, catalase, cathepsins, MMP8), macrophage activation (i.e., CD163, CD206, galectin-1), wound healing/matrix degradation (i.e., nidogen-1, decorin), and IL-16 characterized the aggressive proliferative LN classes and significantly correlated with histological activity. A decline of these biomarkers after 3 months of treatment predicted the 1-year response more robustly than proteinuria, the standard of care (AUC: CD206 0.91, EGFR 0.9, CD163 0.89, proteinuria 0.8). Candidate biomarkers were validated and provide potentially treatable targets. We propose these biomarkers of intrarenal immunological activity as noninvasive tools to diagnose LN and guide treatment and as surrogate endpoints for clinical trials. These findings provide insights into the processes involved in LN activity. This data set is a public resource to generate and test hypotheses and validate biomarkers.

Authors

Andrea Fava, Jill Buyon, Laurence Magder, Jeff Hodgin, Avi Rosenberg, Dawit S. Demeke, Deepak A. Rao, Arnon Arazi, Alessandra Ida Celia, Chaim Putterman, Jennifer H. Anolik, Jennifer Barnas, Maria Dall’Era, David Wofsy, Richard Furie, Diane Kamen, Kenneth Kalunian, Judith A. James, Joel Guthridge, Mohamed G. Atta, Jose Monroy Trujillo, Derek Fine, Robert Clancy, H. Michael Belmont, Peter Izmirly, William Apruzzese, Daniel Goldman, Celine C. Berthier, Paul Hoover, Nir Hacohen, Soumya Raychaudhuri, Anne Davidson, Betty Diamond, the Accelerating Medicines Partnership in RA/SLE network, Michelle Petri

×

Schwann cells modulate nociception in neurofibromatosis 1
Namrata G.R. Raut, … , Nancy Ratner, Michael P. Jankowski
Namrata G.R. Raut, … , Nancy Ratner, Michael P. Jankowski
Published January 23, 2024
Citation Information: JCI Insight. 2024;9(2):e171275. https://doi.org/10.1172/jci.insight.171275.
View: Text | PDF

Schwann cells modulate nociception in neurofibromatosis 1

  • Text
  • PDF
Abstract

Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line–derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.

Authors

Namrata G.R. Raut, Laura A. Maile, Leila M. Oswalt, Irati Mitxelena, Aaditya Adlakha, Kourtney L. Sprague, Ashley R. Rupert, Lane Bokros, Megan C. Hofmann, Jennifer Patritti-Cram, Tilat A. Rizvi, Luis F. Queme, Kwangmin Choi, Nancy Ratner, Michael P. Jankowski

×

Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression
Xingchen Dong, … , Paul Marker, Ting Fu
Xingchen Dong, … , Paul Marker, Ting Fu
Published January 23, 2024
Citation Information: JCI Insight. 2024;9(2):e170428. https://doi.org/10.1172/jci.insight.170428.
View: Text | PDF

Farnesoid X receptor mediates macrophage-intrinsic responses to suppress colitis-induced colon cancer progression

  • Text
  • PDF
Abstract

Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs’ profile in a mouse CAC model. Further, gut macrophage–intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines’ secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages’ recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.

Authors

Xingchen Dong, Ming Qi, Chunmiao Cai, Yu Zhu, Yuwenbin Li, Sally Coulter, Fei Sun, Christopher Liddle, Nataliya V. Uboha, Richard Halberg, Wei Xu, Paul Marker, Ting Fu

×

Treatment of advanced atherosclerotic mice with ABT-263 reduced indices of plaque stability and increased mortality
Santosh Karnewar, … , Laura S. Shankman, Gary K. Owens
Santosh Karnewar, … , Laura S. Shankman, Gary K. Owens
Published January 23, 2024
Citation Information: JCI Insight. 2024;9(2):e173863. https://doi.org/10.1172/jci.insight.173863.
View: Text | PDF

Treatment of advanced atherosclerotic mice with ABT-263 reduced indices of plaque stability and increased mortality

  • Text
  • PDF
Abstract

The use of senolytic agents to remove senescent cells from atherosclerotic lesions is controversial. A common limitation of previous studies is the failure to rigorously define the effects of senolytic agent ABT-263 (Navitoclax) on smooth muscle cells (SMC) despite studies claiming that these cells are the major source of senescent cells. Moreover, there are no studies on the effect of ABT-263 on endothelial cells (EC), which — along with SMC — comprise 90% of α-smooth muscle actin+ (α-SMA+) myofibroblast-like cells in the protective fibrous cap. Here we tested the hypothesis that treatment of advanced atherosclerotic mice with ABT-263 will reduce lesion size and increase plaque stability. SMC (Myh11-CreERT2-eYFP) and EC (Cdh5-CreERT2-eYFP) lineage tracing Apoe–/– mice were fed a western diet (WD) for 18 weeks, followed by ABT-263 at 100 mg/kg/bw for 6 weeks or 50 mg/kg/bw for 9 weeks. ABT-263 treatment did not change lesion size or lumen area of the brachiocephalic artery (BCA). However, ABT-263 treatment reduced SMC by 90% and increased EC contributions to lesions via EC-to-mesenchymal transition (EndoMT) by 60%. ABT-263 treatment also reduced α-SMA+ fibrous cap thickness by 60% and was associated with a > 50% mortality rate. Taken together, ABT-263 treatment of WD-fed Apoe–/– mice with advanced lesions resulted in multiple detrimental changes, including reduced indices of stability and increased mortality.

Authors

Santosh Karnewar, Vaishnavi Karnewar, Laura S. Shankman, Gary K. Owens

×

Integrin β1–rich extracellular vesicles of kidney recruit Fn1+ macrophages to aggravate ischemia-reperfusion–induced inflammation
Wenjuan Wang, … , Quan Hong, Guangyan Cai
Wenjuan Wang, … , Quan Hong, Guangyan Cai
Published January 23, 2024
Citation Information: JCI Insight. 2024;9(2):e169885. https://doi.org/10.1172/jci.insight.169885.
View: Text | PDF

Integrin β1–rich extracellular vesicles of kidney recruit Fn1+ macrophages to aggravate ischemia-reperfusion–induced inflammation

  • Text
  • PDF
Abstract

Ischemia-reperfusion injury–induced (IRI-induced) acute kidney injury is accompanied by mononuclear phagocyte (MP) invasion and inflammation. However, systematic analysis of extracellular vesicle–carried (EV-carried) proteins mediating intercellular crosstalk in the IRI microenvironment is still lacking. Multiomics analysis combining single-cell RNA-Seq data of kidney and protein profiling of kidney-EV was used to elucidate the intercellular communication between proximal tubular cells (PTs) and MP. Targeted adhesion and migration of various MPs were caused by the secretion of multiple chemokines as well as integrin β1–rich EV by ischemic-damaged PTs after IRI. These recruited MPs, especially Fn1+ macrophagocyte, amplified the surviving PT’s inflammatory response by secreting the inflammatory factors TNF-α, MCP-1, and thrombospondin 1 (THBS-1), which could interact with integrin β1 to promote more MP adhesion and interact with surviving PT to further promote the secretion of IL-1β. However, GW4869 reduced MP infiltration and maintained a moderate inflammatory level likely by blocking EV secretion. Our findings establish the molecular bases by which chemokines and kidney-EV mediate PT-MP crosstalk in early IRI and provide insights into systematic intercellular communication.

Authors

Wenjuan Wang, Xuejing Ren, Xiangmei Chen, Quan Hong, Guangyan Cai

×

Disruption of CFAP418 interaction with lipids causes widespread abnormal membrane-associated cellular processes in retinal degenerations
Anna M. Clark, … , Thomas Burgoyne, Jun Yang
Anna M. Clark, … , Thomas Burgoyne, Jun Yang
Published November 16, 2023
Citation Information: JCI Insight. 2024;9(1):e162621. https://doi.org/10.1172/jci.insight.162621.
View: Text | PDF

Disruption of CFAP418 interaction with lipids causes widespread abnormal membrane-associated cellular processes in retinal degenerations

  • Text
  • PDF
Abstract

Syndromic ciliopathies and retinal degenerations are large heterogeneous groups of genetic diseases. Pathogenic variants in the CFAP418 gene may cause both disorders, and its protein sequence is evolutionarily conserved. However, the disease mechanism underlying CFAP418 mutations has not been explored. Here, we apply quantitative lipidomic, proteomic, and phosphoproteomic profiling and affinity purification coupled with mass spectrometry to address the molecular function of CFAP418 in the retina. We show that CFAP418 protein binds to the lipid metabolism precursor phosphatidic acid (PA) and mitochondrion-specific lipid cardiolipin but does not form a tight and static complex with proteins. Loss of Cfap418 in mice disturbs membrane lipid homeostasis and membrane-protein associations, which subsequently causes mitochondrial defects and membrane-remodeling abnormalities across multiple vesicular trafficking pathways in photoreceptors, especially the endosomal sorting complexes required for transport (ESCRT) pathway. Ablation of Cfap418 also increases the activity of PA-binding protein kinase Cα in the retina. Overall, our results indicate that membrane lipid imbalance is a pathological mechanism underlying syndromic ciliopathies and retinal degenerations which is associated with other known causative genes of these diseases.

Authors

Anna M. Clark, Dongmei Yu, Grace Neiswanger, Daniel Zhu, Junhuang Zou, J. Alan Maschek, Thomas Burgoyne, Jun Yang

×

Horizontal transmission of gut microbiota attenuates mortality in lung fibrosis
Stephen J. Gurczynski, … , Bethany B. Moore, David N. O’Dwyer
Stephen J. Gurczynski, … , Bethany B. Moore, David N. O’Dwyer
Published November 28, 2023
Citation Information: JCI Insight. 2024;9(1):e164572. https://doi.org/10.1172/jci.insight.164572.
View: Text | PDF

Horizontal transmission of gut microbiota attenuates mortality in lung fibrosis

  • Text
  • PDF
Abstract

Pulmonary fibrosis is a chronic and often fatal disease. The pathogenesis is characterized by aberrant repair of lung parenchyma, resulting in loss of physiological homeostasis, respiratory failure, and death. The immune response in pulmonary fibrosis is dysregulated. The gut microbiome is a key regulator of immunity. The role of the gut microbiome in regulating the pulmonary immunity in lung fibrosis is poorly understood. Here, we determine the impact of gut microbiota on pulmonary fibrosis in substrains of C57BL/6 mice derived from different vendors (C57BL/6J and C57BL/6NCrl). We used germ-free models, fecal microbiota transplantation, and cohousing to transmit gut microbiota. Metagenomic studies of feces established keystone species between substrains. Pulmonary fibrosis was microbiota dependent in C57BL/6 mice. Gut microbiota were distinct by β diversity and α diversity. Mortality and lung fibrosis were attenuated in C57BL/6NCrl mice. Elevated CD4+IL-10+ T cells and lower IL-6 occurred in C57BL/6NCrl mice. Horizontal transmission of microbiota by cohousing attenuated mortality in C57BL/6J mice and promoted a transcriptionally altered pulmonary immunity. Temporal changes in lung and gut microbiota demonstrated that gut microbiota contributed largely to immunological phenotype. Key regulatory gut microbiota contributed to lung fibrosis, generating rationale for human studies.

Authors

Stephen J. Gurczynski, Jay H. Lipinski, Joshua Strauss, Shafiul Alam, Gary B. Huffnagle, Piyush Ranjan, Lucy H. Kennedy, Bethany B. Moore, David N. O’Dwyer

×

Hypoxia-activated prodrug and antiangiogenic therapies cooperatively treat pancreatic cancer but elicit immunosuppressive G-MDSC infiltration
Arthur Liu, … , David S. Hong, Michael A. Curran
Arthur Liu, … , David S. Hong, Michael A. Curran
Published November 21, 2023
Citation Information: JCI Insight. 2024;9(1):e169150. https://doi.org/10.1172/jci.insight.169150.
View: Text | PDF

Hypoxia-activated prodrug and antiangiogenic therapies cooperatively treat pancreatic cancer but elicit immunosuppressive G-MDSC infiltration

  • Text
  • PDF
Abstract

We previously showed that ablation of tumor hypoxia can sensitize tumors to immune checkpoint blockade (ICB). Here, we used a Kras+/G12D TP53+/R172H Pdx1-Cre–derived (KPC-derived) model of pancreatic adenocarcinoma to examine the tumor response and adaptive resistance mechanisms involved in response to 2 established methods of hypoxia-reducing therapy: the hypoxia-activated prodrug TH-302 and vascular endothelial growth factor receptor 2 (VEGFR-2) blockade. The combination of both modalities normalized tumor vasculature, increased DNA damage and cell death, and delayed tumor growth. In contrast with prior cancer models, the combination did not alleviate overall tissue hypoxia or sensitize these KPC tumors to ICB therapy despite qualitative improvements to the CD8+ T cell response. Bulk tumor RNA sequencing, flow cytometry, and adoptive myeloid cell transfer suggested that treated tumor cells increased their capacity to recruit granulocytic myeloid-derived suppressor cells (G-MDSCs) through CCL9 secretion. Blockade of the CCL9/CCR1 axis could limit G-MDSC migration, and depletion of Ly6G-positive cells could sensitize tumors to the combination of TH-302, anti–VEGFR-2, and ICB. Together, these data suggest that pancreatic tumors modulate G-MDSC migration as an adaptive response to vascular normalization and that these immunosuppressive myeloid cells act in a setting of persistent hypoxia to maintain adaptive immune resistance.

Authors

Arthur Liu, Seth T. Gammon, Federica Pisaneschi, Akash Boda, Casey R. Ager, David Piwnica-Worms, David S. Hong, Michael A. Curran

×
  • ← Previous
  • 1
  • 2
  • …
  • 74
  • 75
  • 76
  • …
  • 397
  • 398
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts