Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,127 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 58
  • 59
  • 60
  • …
  • 412
  • 413
  • Next →
Immune perturbation following SHIV infection is greater in newborn macaques than in infants
Mariya B. Shapiro, Tracy Ordonez, Shilpi Pandey, Eisa Mahyari, Kosiso Onwuzu, Jason Reed, Heather Sidener, Jeremy Smedley, Lois M. Colgin, Amanda Johnson, Anne D. Lewis, Benjamin Bimber, Jonah B. Sacha, Ann J. Hessell, Nancy L. Haigwood
Mariya B. Shapiro, Tracy Ordonez, Shilpi Pandey, Eisa Mahyari, Kosiso Onwuzu, Jason Reed, Heather Sidener, Jeremy Smedley, Lois M. Colgin, Amanda Johnson, Anne D. Lewis, Benjamin Bimber, Jonah B. Sacha, Ann J. Hessell, Nancy L. Haigwood
View: Text | PDF

Immune perturbation following SHIV infection is greater in newborn macaques than in infants

  • Text
  • PDF
Abstract

Transmission of HIV-1 to newborns and infants remains high, with 130,000 new infections in 2022 in resource-limited settings. Half of HIV-infected newborns, if untreated, progress to disease and death within 2 years. While immunologic immaturity likely promotes pathogenesis and poor viral control, little is known about immune damage in newborns and infants. Here we examined pathologic, virologic, and immunologic outcomes in rhesus macaques exposed to pathogenic simian-human immunodeficiency virus (SHIV) at 1–2 weeks, defined as newborns, or at 4 months of age, considered infants. Kinetics of plasma viremia and lymph node seeding DNA were indistinguishable in newborns and infants, but levels of viral DNA in gut and lymphoid tissues 6–10 weeks after infection were significantly higher in newborns versus either infant or adult macaques. Two of 6 newborns with the highest viral seeding required euthanasia at 25 days. We observed age-dependent alterations in leukocyte subsets and gene expression. Compared with infants, newborns had stronger skewing of monocytes and CD8+ T cells toward differentiated subsets and little evidence of type I interferon responses by transcriptomic analyses. Thus, SHIV infection reveals distinct immunological alterations in newborn and infant macaques. These studies lay the groundwork for understanding how immune maturation affects pathogenesis in pediatric HIV-1 infection.

Authors

Mariya B. Shapiro, Tracy Ordonez, Shilpi Pandey, Eisa Mahyari, Kosiso Onwuzu, Jason Reed, Heather Sidener, Jeremy Smedley, Lois M. Colgin, Amanda Johnson, Anne D. Lewis, Benjamin Bimber, Jonah B. Sacha, Ann J. Hessell, Nancy L. Haigwood

×

Sparsentan improves glomerular hemodynamics, cell functions, and tissue repair in a mouse model of FSGS
Georgina Gyarmati, Urvi Nikhil Shroff, Audrey Izuhara, Sachin Deepak, Radko Komers, Patricia W. Bedard, Janos Peti-Peterdi
Georgina Gyarmati, Urvi Nikhil Shroff, Audrey Izuhara, Sachin Deepak, Radko Komers, Patricia W. Bedard, Janos Peti-Peterdi
View: Text | PDF

Sparsentan improves glomerular hemodynamics, cell functions, and tissue repair in a mouse model of FSGS

  • Text
  • PDF
Abstract

Dual endothelin-1 (ET-1) and angiotensin II (AngII) receptor antagonism with sparsentan has strong antiproteinuric actions via multiple potential mechanisms that are more pronounced, or additive, compared with current standard of care using angiotensin receptor blockers (ARBs). Considering the many actions of ET-1 and AngII on multiple cell types, this study aimed to determine glomeruloprotective mechanisms of sparsentan compared to the ARB losartan by direct visualization of its effects in the intact kidney in focal segmental glomerulosclerosis (FSGS) using intravital multiphoton microscopy. In both healthy and FSGS models, sparsentan treatment increased afferent/efferent arteriole diameters; increased or preserved blood flow and single-nephron glomerular filtration rate; attenuated acute ET-1 and AngII–induced increases in podocyte calcium; reduced proteinuria; preserved podocyte number; increased both endothelial and renin lineage cells and clones in vasculature, glomeruli, and tubules; restored glomerular endothelial glycocalyx; and attenuated mitochondrial stress and immune cell homing. These effects were either not observed or of smaller magnitude with losartan. The pleiotropic nephroprotective effects of sparsentan included improved hemodynamics, podocyte and endothelial cell functions, and tissue repair. Compared with losartan, sparsentan was more effective in the sustained preservation of kidney structure and function, which underscores the importance of the ET-1 component in FSGS pathogenesis and therapy.

Authors

Georgina Gyarmati, Urvi Nikhil Shroff, Audrey Izuhara, Sachin Deepak, Radko Komers, Patricia W. Bedard, Janos Peti-Peterdi

×

miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression
Pablo Fernández-Tussy, Magdalena P. Cardelo, Hanming Zhang, Jonathan Sun, Nathan L. Price, Nabil E. Boutagy, Leigh Goedeke, Martí Cadena-Sandoval, Chrysovalantou E. Xirouchaki, Wendy Brown, Xiaoyong Yang, Oscar Pastor-Rojo, Rebecca A. Haeusler, Anton M. Bennett, Tony Tiganis, Yajaira Suárez, Carlos Fernández-Hernando
Pablo Fernández-Tussy, Magdalena P. Cardelo, Hanming Zhang, Jonathan Sun, Nathan L. Price, Nabil E. Boutagy, Leigh Goedeke, Martí Cadena-Sandoval, Chrysovalantou E. Xirouchaki, Wendy Brown, Xiaoyong Yang, Oscar Pastor-Rojo, Rebecca A. Haeusler, Anton M. Bennett, Tony Tiganis, Yajaira Suárez, Carlos Fernández-Hernando
View: Text | PDF

miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression

  • Text
  • PDF
Abstract

The complexity of the mechanisms underlying metabolic dysfunction–associated steatotic liver disease (MASLD) progression remains a significant challenge for the development of effective therapeutics. miRNAs have shown great promise as regulators of biological processes and as therapeutic targets for complex diseases. Here, we study the role of hepatic miR-33, an important regulator of lipid metabolism, during the progression of MASLD and the development of hepatocellular carcinoma (HCC). We report that miR-33 was elevated in the livers of humans and mice with MASLD and that its deletion in hepatocytes (miR-33 HKO) improved multiple aspects of the disease, including steatosis and inflammation, limiting the progression to metabolic dysfunction–associated steatotic hepatitis (MASH), fibrosis, and HCC. Mechanistically, hepatic miR-33 deletion reduced lipid synthesis and promoted mitochondrial fatty acid oxidation, reducing lipid burden. Additionally, absence of miR-33 altered the expression of several known miR-33 target genes involved in metabolism and resulted in improved mitochondrial function and reduced oxidative stress. The reduction in lipid accumulation and liver injury resulted in decreased YAP/TAZ pathway activation, which may be involved in the reduced HCC progression in HKO livers. Together, these results suggest suppressing hepatic miR-33 may be an effective therapeutic approach to temper the development of MASLD, MASH, and HCC in obesity.

Authors

Pablo Fernández-Tussy, Magdalena P. Cardelo, Hanming Zhang, Jonathan Sun, Nathan L. Price, Nabil E. Boutagy, Leigh Goedeke, Martí Cadena-Sandoval, Chrysovalantou E. Xirouchaki, Wendy Brown, Xiaoyong Yang, Oscar Pastor-Rojo, Rebecca A. Haeusler, Anton M. Bennett, Tony Tiganis, Yajaira Suárez, Carlos Fernández-Hernando

×

MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant
Victoria Leroy, Denny J. Manual Kollareth, Zhenxiao Tu, Jeff Arni C. Valisno, Makena Woolet-Stockton, Biplab Saha, Amir M. Emtiazjoo, Mindaugas Rackauskas, Lyle L. Moldawer, Philip A. Efron, Guoshuai Cai, Carl Atkinson, Gilbert R. Upchurch Jr., Ashish K. Sharma
Victoria Leroy, Denny J. Manual Kollareth, Zhenxiao Tu, Jeff Arni C. Valisno, Makena Woolet-Stockton, Biplab Saha, Amir M. Emtiazjoo, Mindaugas Rackauskas, Lyle L. Moldawer, Philip A. Efron, Guoshuai Cai, Carl Atkinson, Gilbert R. Upchurch Jr., Ashish K. Sharma
View: Text | PDF

MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant

  • Text
  • PDF
Abstract

Lung transplantation (LTx) outcomes are impeded by ischemia/reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of receptor Mer tyrosine kinase (MerTK) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from patients after LTx were analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with BALB/c (WT), Cebpb–/– (MDSC-deficient), Mertk–/–, or MerTK–cleavage-resistant mice. A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of patients with CLAD was observed compared with healthy individuals. In the murine IRI model, a significant increase in M-MDSCs, MerTK expression, and efferocytosis and attenuation of lung dysfunction was observed in WT mice during injury resolution that was absent in Cebpb–/– and Mertk–/– mice. Adoptive transfer of M-MDSCs in Cebpb–/– mice significantly attenuated lung dysfunction and inflammation. Additionally, in a murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can substantially contribute to the resolution of post-LTx IRI.

Authors

Victoria Leroy, Denny J. Manual Kollareth, Zhenxiao Tu, Jeff Arni C. Valisno, Makena Woolet-Stockton, Biplab Saha, Amir M. Emtiazjoo, Mindaugas Rackauskas, Lyle L. Moldawer, Philip A. Efron, Guoshuai Cai, Carl Atkinson, Gilbert R. Upchurch Jr., Ashish K. Sharma

×

Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model
Luis R. Cassinotti, Lingchao Ji, M. Caroline Yuk, Aditi S. Desai, Nathan D. Cass, Zahara A. Amir, Gabriel Corfas
Luis R. Cassinotti, Lingchao Ji, M. Caroline Yuk, Aditi S. Desai, Nathan D. Cass, Zahara A. Amir, Gabriel Corfas
View: Text | PDF

Hidden hearing loss in a Charcot-Marie-Tooth type 1A mouse model

  • Text
  • PDF
Abstract

Hidden hearing loss (HHL), a recently described auditory neuropathy characterized by normal audiometric thresholds but reduced sound-evoked cochlear compound action potentials, has been proposed to contribute to hearing difficulty in noisy environments in people with normal hearing thresholds and has become a widespread complaint. While most studies on HHL pathogenesis have focused on inner hair cell (IHC) synaptopathy, we recently showed that transient auditory nerve (AN) demyelination also causes HHL in mice. To test the effect of myelinopathy on hearing in a clinically relevant model, we studied a mouse model of Charcot-Marie-Tooth type 1A (CMT1A), the most prevalent hereditary peripheral neuropathy in humans. CMT1A mice exhibited the functional hallmarks of HHL together with disorganization of AN heminodes near the IHCs with minor loss of AN fibers. These results support the hypothesis that mild disruptions of AN myelination can cause HHL and that heminodal defects contribute to the alterations in the sound-evoked cochlear compound action potentials seen in this mouse model. Furthermore, these findings suggest that patients with CMT1A or other mild peripheral neuropathies are likely to suffer from HHL. Furthermore, these results suggest that studies of hearing in patients with CMT1A might help develop robust clinical tests for HHL, which are currently lacking.

Authors

Luis R. Cassinotti, Lingchao Ji, M. Caroline Yuk, Aditi S. Desai, Nathan D. Cass, Zahara A. Amir, Gabriel Corfas

×

Spatiotemporally distinct roles of cyclooxygenase-1 and cyclooxygenase-2 at fetomaternal interface in mice
Shizu Aikawa, Mitsunori Matsuo, Shun Akaeda, Yukihiko Sugimoto, Makoto Arita, Yosuke Isobe, Yuki Sugiura, Shu Taira, Rae Maeda, Ryoko Shimizu-Hirota, Norihiko Takeda, Daiki Hiratsuka, Xueting He, Chihiro Ishizawa, Rei Iida, Yamato Fukui, Takehiro Hiraoka, Miyuki Harada, Osamu Wada-Hiraike, Yutaka Osuga, Yasushi Hirota
Shizu Aikawa, Mitsunori Matsuo, Shun Akaeda, Yukihiko Sugimoto, Makoto Arita, Yosuke Isobe, Yuki Sugiura, Shu Taira, Rae Maeda, Ryoko Shimizu-Hirota, Norihiko Takeda, Daiki Hiratsuka, Xueting He, Chihiro Ishizawa, Rei Iida, Yamato Fukui, Takehiro Hiraoka, Miyuki Harada, Osamu Wada-Hiraike, Yutaka Osuga, Yasushi Hirota
View: Text | PDF

Spatiotemporally distinct roles of cyclooxygenase-1 and cyclooxygenase-2 at fetomaternal interface in mice

  • Text
  • PDF
Abstract

Embryo implantation is crucial for ensuring a successful pregnancy outcome and subsequent child health. The intrauterine environment during the peri-implantation period shows drastic changes in gene expression and cellular metabolism in response to hormonal stimuli and reciprocal communication with embryos. Here, we performed spatial transcriptomic analysis to elucidate the mechanisms underlying embryo implantation. Transcriptome data revealed that lipid metabolism pathways, especially arachidonic acid–related (AA-related) ones, were enriched in the embryo-receptive luminal epithelia. Cyclooxygenases (COXs), rate-limiting enzymes involved in prostaglandin production by AA, were spatiotemporally regulated in the vicinity of embryos during implantation, but the role of each COX isozyme in the uterus for successful pregnancy was unclear. We established uterine-specific COX2-knockout (uKO) and COX1/uterine COX2-double-KO (COX1/COX2-DKO) mice. COX2 uKO caused deferred implantation with failed trophoblast invasion, resulting in subfertility with reduced pregnancy rates and litter sizes. COX1/COX2 DKO induced complete infertility, owing to abrogated embryo attachment. These results demonstrate that both isozymes have distinct roles during embryo implantation. Spatial transcriptome and lipidome analyses revealed unique profiles of prostaglandin synthesis by each COX isozyme and spatiotemporal expression patterns of downstream receptors throughout the endometrium. Our findings reveal previously unappreciated roles of COXs at the fetomaternal interface to establish early pregnancy.

Authors

Shizu Aikawa, Mitsunori Matsuo, Shun Akaeda, Yukihiko Sugimoto, Makoto Arita, Yosuke Isobe, Yuki Sugiura, Shu Taira, Rae Maeda, Ryoko Shimizu-Hirota, Norihiko Takeda, Daiki Hiratsuka, Xueting He, Chihiro Ishizawa, Rei Iida, Yamato Fukui, Takehiro Hiraoka, Miyuki Harada, Osamu Wada-Hiraike, Yutaka Osuga, Yasushi Hirota

×

T follicular regulatory cells in food allergy promote IgE via IL-4
Qiang Chen, Abdullahi M. Abdi, Wei Luo, Xue Yuan, Alexander L. Dent
Qiang Chen, Abdullahi M. Abdi, Wei Luo, Xue Yuan, Alexander L. Dent
View: Text | PDF

T follicular regulatory cells in food allergy promote IgE via IL-4

  • Text
  • PDF
Abstract

T follicular regulatory (TFR) cells are found in the germinal center (GC) response and, along with T follicular helper (TFH) cells, help to control the development of high-affinity antibodies (Ab). Although TFR cells are generally thought to repress GC B cells and the Ab response, we have previously shown that in a mouse food allergy model, TFR cells produce IL-10 and play an essential helper role such that in the absence of TFR cells, IgE responses are diminished. Here we show that in this food allergy response, TFR cells produced IL-4 that promotes the generation of antigen-specific IgE. We show that food allergy–primed TFR cells specifically upregulate IL-4 gene transcription and produce functional IL-4 that promoted IgE responses both in vitro and in vivo. We determined that IgE responses are dependent on a high level of IL-4 produced by follicular T cells in the GC, explaining the need for IL-4 produced by TFR cells in the food allergy response. Overall, our findings have demonstrated that in food allergy, TFR cells can produce IL-4 and regulate IgE in a manner that augments the role of TFH cells in IgE responses.

Authors

Qiang Chen, Abdullahi M. Abdi, Wei Luo, Xue Yuan, Alexander L. Dent

×

Identification of Postn+ periosteal progenitor cells with bone regenerative potential
Bei Yin, Fangyuan Shen, Qingge Ma, Yongcheng Liu, Xianglong Han, Xuyu Cai, Yu Shi, Ling Ye
Bei Yin, Fangyuan Shen, Qingge Ma, Yongcheng Liu, Xianglong Han, Xuyu Cai, Yu Shi, Ling Ye
View: Text | PDF

Identification of Postn+ periosteal progenitor cells with bone regenerative potential

  • Text
  • PDF
Abstract

Bone contains multiple pools of skeletal stem/progenitor cells (SSPCs), and SSPCs in periosteal compartments are known to exhibit higher regenerative potential than those in BM and endosteal compartments. However, the in vivo identity and hierarchical relationships of periosteal SSPCs (P-SSPCs) remain unclear due to a lack of reliable markers to distinguish BM SSPCs and P-SSPCs. Here, we found that periosteal mesenchymal progenitor cells (P-MPs) in periosteum can be identified based on Postn-CreERT2 expression. Postn-expressing periosteal subpopulation produces osteolineage descendants that fuel bones to maintain homeostasis and support regeneration. Notably, Postn+ P-MPs are likely derived from Gli1+ skeletal stem cells (SSCs). Ablation of Postn+ cells results in impairments in homeostatic cortical bone architecture and defects in fracture repair. Genetic deletion of Igf1r in Postn+ cells dampens bone fracture healing. In summary, our study provides a mechanistic understanding of bone regeneration through the regulation of region-specific Postn+ P-MPs.

Authors

Bei Yin, Fangyuan Shen, Qingge Ma, Yongcheng Liu, Xianglong Han, Xuyu Cai, Yu Shi, Ling Ye

×

Phosphodiesterase-5 inhibition collaborates with vaccine-based immunotherapy to reprogram myeloid cells in pancreatic ductal adenocarcinoma
Nicole E. Gross, Zhehao Zhang, Jacob T. Mitchell, Soren Charmsaz, Alexei G. Hernandez, Erin M. Coyne, Sarah M. Shin, Diana Carolina Vargas Carvajal, Dimitrios N. Sidiropoulos, Yeonju Cho, Guanglan Mo, Xuan Yuan, Courtney Cannon, Jayalaxmi Suresh Babu, Melissa R. Lyman, Todd Armstrong, Luciane T. Kagohara, Katherine M. Bever, Dung T. Le, Elizabeth M. Jaffee, Elana J. Fertig, Won Jin Ho
Nicole E. Gross, Zhehao Zhang, Jacob T. Mitchell, Soren Charmsaz, Alexei G. Hernandez, Erin M. Coyne, Sarah M. Shin, Diana Carolina Vargas Carvajal, Dimitrios N. Sidiropoulos, Yeonju Cho, Guanglan Mo, Xuan Yuan, Courtney Cannon, Jayalaxmi Suresh Babu, Melissa R. Lyman, Todd Armstrong, Luciane T. Kagohara, Katherine M. Bever, Dung T. Le, Elizabeth M. Jaffee, Elana J. Fertig, Won Jin Ho
View: Text | PDF

Phosphodiesterase-5 inhibition collaborates with vaccine-based immunotherapy to reprogram myeloid cells in pancreatic ductal adenocarcinoma

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (PDAC) is highly lethal and resistant to immunotherapy. Although immune recognition can be enhanced with immunomodulatory agents including checkpoint inhibitors and vaccines, few patients experience clinical efficacy because the tumor immune microenvironment (TiME) is dominated by immunosuppressive myeloid cells that impose T cell inhibition. Inhibition of phosphodiesterase-5 (PDE5) was reported to downregulate metabolic regulators arginase and inducible NOS in immunosuppressive myeloid cells and enhance immunity against immune-sensitive tumors, including head and neck cancers. We show for the first time to our knowledge that combining a PDE5 inhibitor, tadalafil, with a mesothelin-specific vaccine, anti–programmed cell death protein 1, and anti–cytotoxic T lymphocyte–associated protein 4 yields antitumor efficacy even against immune-resistant PDAC. To determine immunologic advantages conferred by tadalafil, we profiled the TiME using mass cytometry and single-cell RNA-sequencing analysis with Domino to infer intercellular signaling. Our analyses demonstrated that tadalafil reprograms myeloid cells to be less immunosuppressive. Moreover, tadalafil synergized with the vaccine, enhancing T cell activation including mesothelin-specific T cells. Tadalafil treatment was also associated with myeloid/T cell signaling axes important for antitumor responses (e.g., Cxcr3, Il12). Our study shows that PDE5 inhibition combined with vaccine-based immunotherapy promotes pro-inflammatory states of myeloid cells, activation of T cells, and enhanced myeloid/T cell crosstalk to yield antitumor efficacy against immune-resistant PDAC.

Authors

Nicole E. Gross, Zhehao Zhang, Jacob T. Mitchell, Soren Charmsaz, Alexei G. Hernandez, Erin M. Coyne, Sarah M. Shin, Diana Carolina Vargas Carvajal, Dimitrios N. Sidiropoulos, Yeonju Cho, Guanglan Mo, Xuan Yuan, Courtney Cannon, Jayalaxmi Suresh Babu, Melissa R. Lyman, Todd Armstrong, Luciane T. Kagohara, Katherine M. Bever, Dung T. Le, Elizabeth M. Jaffee, Elana J. Fertig, Won Jin Ho

×

HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation
Mohd P. Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne Taylor, Ernestina Schipani
Mohd P. Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne Taylor, Ernestina Schipani
View: Text | PDF

HIF1 activation safeguards cortical bone formation against impaired oxidative phosphorylation

  • Text
  • PDF
Abstract

Energy metabolism, through pathways such as oxidative phosphorylation (OxPhos) and glycolysis, plays a pivotal role in cellular differentiation and function. Our study investigates the impact of OxPhos disruption in cortical bone development by deleting mitochondrial transcription factor A (TFAM). TFAM controls OxPhos by regulating the transcription of mitochondrial genes. The cortical bone, constituting the long bones’ rigid shell, is sheathed by the periosteum, a connective tissue layer populated with skeletal progenitors that spawn osteoblasts, the bone-forming cells. TFAM-deficient mice presented with thinner cortical bone, spontaneous midshaft fractures, and compromised periosteal cell bioenergetics, characterized by reduced ATP levels. Additionally, they exhibited an enlarged periosteal progenitor cell pool with impaired osteoblast differentiation. Increasing hypoxia-inducible factor 1a (HIF1) activity within periosteal cells substantially mitigated the detrimental effects induced by TFAM deletion. HIF1 is known to promote glycolysis in all cell types. Our findings underscore the indispensability of OxPhos for the proper accrual of cortical bone mass and indicate a compensatory mechanism between OxPhos and glycolysis in periosteal cells. The study opens new avenues for understanding the relationship between energy metabolism and skeletal health and suggests that modulating bioenergetic pathways may provide a therapeutic avenue for conditions characterized by bone fragility.

Authors

Mohd P. Khan, Elena Sabini, Katherine Beigel, Giulia Lanzolla, Brittany Laslow, Dian Wang, Christophe Merceron, Amato Giaccia, Fanxin Long, Deanne Taylor, Ernestina Schipani

×
  • ← Previous
  • 1
  • 2
  • …
  • 58
  • 59
  • 60
  • …
  • 412
  • 413
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts