Tregs can adopt a catabolic metabolic program with increased capacity for fatty acid oxidation–fueled oxidative phosphorylation (OXPHOS). It is unclear why this form of metabolism is favored in Tregs and, more specifically, whether this program represents an adaptation to the environment and developmental cues or is “hardwired” by Foxp3. Here we show, using metabolic analysis and an unbiased mass spectroscopy–based proteomics approach, that Foxp3 is both necessary and sufficient to program Treg-increased respiratory capacity and Tregs’ increased ability to utilize fatty acids to fuel oxidative phosphorylation. Foxp3 drives upregulation of components of all the electron transport complexes, increasing their activity and ATP generation by oxidative phosphorylation. Increased fatty acid β-oxidation also results in selective protection of Foxp3+ cells from fatty acid–induced cell death. This observation may provide novel targets for modulating Treg function or selection therapeutically.
Duncan Howie, Stephen Paul Cobbold, Elizabeth Adams, Annemieke Ten Bokum, Andra Stefania Necula, Wei Zhang, Honglei Huang, David J. Roberts, Benjamin Thomas, Svenja S. Hester, David J. Vaux, Alexander G. Betz, Herman Waldmann
The fibrotic reaction, which can account for over 70%–80% of the tumor mass, is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of collagen I production and fibrosis in vivo. In this report, we show that members of the bromodomain and extraterminal (BET) family of proteins are expressed in primary PSCs isolated from human PDAC tumors, with BRD4 positively regulating, and BRD2 and BRD3 negatively regulating, collagen I expression in primary cancer-associated PSCs. We show that the inhibitory effect of pan-BET inhibitors on collagen I expression in primary cancer-associated PSCs is through blocking of BRD4 function. Importantly, we show that FOSL1 is repressed by BRD4 in primary cancer-associated PSCs and negatively regulates collagen I expression. While BET inhibitors do not affect viability or induce PSC apoptosis or senescence, BET inhibitors induce primary cancer-associated PSCs to become quiescent. Finally, we show that BET inhibitors attenuate stellate cell activation, fibrosis, and collagen I production in the EL-KrasG12D transgenic mouse model of pancreatic tumorigenesis. Our results demonstrate that BET inhibitors regulate fibrosis by modulating the activation and function of cancer-associated PSCs.
Krishan Kumar, Brian T. DeCant, Paul J. Grippo, Rosa F. Hwang, David J. Bentrem, Kazumi Ebine, Hidayatullah G. Munshi
Chronic urethral obstruction and the ensuing bladder wall remodeling can lead to diminished bladder smooth muscle (BSM) contractility and debilitating lower urinary tract symptoms. No effective pharmacotherapy exists to restore BSM contractile function. Neuropilin 2 (Nrp2) is a transmembrane protein that is highly expressed in BSM. Nrp2 deletion in mice leads to increased BSM contraction. We determined whether genetic ablation of Nrp2 could restore BSM contractility following obstruction. Partial bladder outlet obstruction (pBOO) was created by urethral occlusion in mice with either constitutive and ubiquitous, or inducible smooth muscle–specific deletion of Nrp2, and Nrp2-intact littermates. Mice without obstruction served as additional controls. Contractility was measured by isometric tension testing. Nrp2 deletion prior to pBOO increased force generation in BSM 4 weeks following surgery. Deletion of Nrp2 in mice already subjected to pBOO for 4 weeks showed increased contractility of tissues tested 6 weeks after surgery compared with nondeleted controls. Assessment of tissues from patients with urodynamically defined bladder outlet obstruction revealed reduced NRP2 levels in obstructed bladders with compensated compared with decompensated function, relative to asymptomatic controls. We conclude that downregulation of Nrp2 promotes BSM force generation. Neuropilin 2 may represent a novel target to restore contractility following obstruction.
Evalynn Vasquez, Vivian Cristofaro, Stefan Lukianov, Fiona C. Burkhard, Ali Hashemi Gheinani, Katia Monastyrskaya, Diane R. Bielenberg, Maryrose P. Sullivan, Rosalyn M. Adam
In the central nervous system, endothelial cells (ECs) and pericytes (PCs) of blood vessel walls cooperatively form a physical and chemical barrier to maintain neural homeostasis. However, in diabetic retinopathy (DR), the loss of PCs from vessel walls is assumed to cause breakdown of the blood-retina barrier (BRB) and subsequent vision-threatening vascular dysfunctions. Nonetheless, the lack of adequate DR animal models has precluded disease understanding and drug discovery. Here, by using an anti-PDGFRβ antibody, we show that transient inhibition of the PC recruitment to developing retinal vessels sustained EC-PC dissociations and BRB breakdown in adult mouse retinas, reproducing characteristic features of DR such as hyperpermeability, hypoperfusion, and neoangiogenesis. Notably, PC depletion directly induced inflammatory responses in ECs and perivascular infiltration of macrophages, whereby macrophage-derived VEGF and placental growth factor (PlGF) activated VEGFR1 in macrophages and VEGFR2 in ECs. Moreover, angiopoietin-2 (Angpt2) upregulation and Tie1 downregulation activated FOXO1 in PC-free ECs locally at the leaky aneurysms. This cycle of vessel damage was shut down by simultaneously blocking VEGF, PlGF, and Angpt2, thus restoring the BRB integrity. Together, our model provides new opportunities for identifying the sequential events triggered by PC deficiency, not only in DR, but also in various neurological disorders.
Shuntaro Ogura, Kaori Kurata, Yuki Hattori, Hiroshi Takase, Toshina Ishiguro-Oonuma, Yoonha Hwang, Soyeon Ahn, Inwon Park, Wataru Ikeda, Sentaro Kusuhara, Yoko Fukushima, Hiromi Nara, Hideto Sakai, Takashi Fujiwara, Jun Matsushita, Masatsugu Ema, Masanori Hirashima, Takashi Minami, Masabumi Shibuya, Nobuyuki Takakura, Pilhan Kim, Takaki Miyata, Yuichiro Ogura, Akiyoshi Uemura
Heterotrimeric G proteins play critical roles in transducing extracellular signals generated by 7-transmembrane domain receptors. Somatic gain-of-function mutations in G protein α subunits are associated with a variety of diseases. Recently, we identified gain-of-function mutations in Gα11 in patients with autosomal-dominant hypocalcemia type 2 (ADH2), an inherited disorder of hypocalcemia, low parathyroid hormone (PTH), and hyperphosphatemia. We have generated knockin mice harboring the point mutation
Kelly L. Roszko, Ruiye Bi, Caroline M. Gorvin, Hans Bräuner-Osborne, Xiao-Feng Xiong, Asuka Inoue, Rajesh V. Thakker, Kristian Strømgaard, Thomas Gardella, Michael Mannstadt
Heterozygous germline gain-of-function mutations of G-protein subunit α11 (Gα11), a signaling partner for the calcium-sensing receptor (CaSR), result in autosomal dominant hypocalcemia type 2 (ADH2). ADH2 may cause symptomatic hypocalcemia with low circulating parathyroid hormone (PTH) concentrations. Effective therapies for ADH2 are currently not available, and a mouse model for ADH2 would help in assessment of potential therapies. We hypothesized that a previously reported dark skin mouse mutant (
Caroline M. Gorvin, Fadil M. Hannan, Sarah A. Howles, Valerie N. Babinsky, Sian E. Piret, Angela Rogers, Andrew J. Freidin, Michelle Stewart, Anju Paudyal, Tertius A. Hough, M. Andrew Nesbit, Sara Wells, Tonia L. Vincent, Stephen D.M. Brown, Roger D. Cox, Rajesh V. Thakker
The heme oxygenase-1 (
Hagir B. Suliman, Jeffrey E. Keenan, Claude A. Piantadosi
Levamisole, an anthelmintic drug with cholinergic properties, has been implicated in cases of drug-induced vasculitis when added to cocaine for profit purposes. Neutrophil extracellular trap (NET) formation is a cell death mechanism characterized by extrusion of chromatin decorated with granule proteins. Aberrant NET formation and degradation have been implicated in idiopathic autoimmune diseases that share features with levamisole-induced autoimmunity as well as in drug-induced autoimmunity. This study’s objective was to determine how levamisole modulates neutrophil biology and its putative effects on the vasculature. Murine and human neutrophils exposed to levamisole demonstrated enhanced NET formation through engagement of muscarinic subtype 3 receptor. Levamisole-induced NETosis required activation of Akt and the RAF/MEK/ERK pathway, ROS induction through the nicotinamide adenine dinucleotide phosphate oxidase, and peptidylarginine deiminase activation. Sera from two cohorts of patients actively using levamisole-adulterated cocaine displayed autoantibodies against NET components. Cutaneous biopsy material obtained from individuals exposed to levamisole suggests that neutrophils produce NETs in areas of vasculitic inflammation and thrombosis. NETs generated by levamisole were toxic to endothelial cells and impaired endothelium-dependent vasorelaxation. Stimulation of muscarinic receptors on neutrophils by cholinergic agonists may contribute to the pathophysiology observed in drug-induced autoimmunity through the induction of inflammatory responses and neutrophil-induced vascular damage.
Carmelo Carmona-Rivera, Monica M. Purmalek, Erica Moore, Meryl Waldman, Peter J. Walter, H. Martin Garraffo, Karran A. Phillips, Kenzie L. Preston, Jonathan Graf, Mariana J. Kaplan, Peter C. Grayson
Canavan disease (CD) is a debilitating and lethal leukodystrophy caused by mutations in the aspartoacylase (
Dominic J. Gessler, Danning Li, Hongxia Xu, Qin Su, Julio Sanmiguel, Serafettin Tuncer, Constance Moore, Jean King, Reuben Matalon, Guangping Gao
Rat and human CD4+ and CD8+ Tregs expressing low levels of CD45RC have strong immunoregulatory properties. We describe here that human CD45 isoforms are nonredundant and identify distinct subsets of cells. We show that CD45RC is not expressed by CD4+ and CD8+ Foxp3+ Tregs, while CD45RA/RB/RO are. Transient administration of a monoclonal antibody (mAb) targeting CD45RC in a rat cardiac allotransplantation model induced transplant tolerance associated with inhibition of allogeneic humoral responses but maintained primary and memory responses against cognate antigens. Anti-CD45RC mAb induced rapid death of CD45RChigh T cells through intrinsic cell signaling but preserved and potentiated CD4+ and CD8+ CD45RClow/– Tregs, which are able to adoptively transfer donor-specific tolerance to grafted recipients. Anti-CD45RC treatment results in distinct transcriptional signature of CD4+ and CD8+ CD45RClow/– Tregs. Finally, we demonstrate that anti-human CD45RC treatment inhibited graft-versus-host disease (GVHD) in immune-humanized NSG mice. Thus, short-term anti-CD45RC is a potent therapeutic candidate to induce transplantation tolerance in human.
Elodie Picarda, Séverine Bézie, Laetitia Boucault, Elodie Autrusseau, Stéphanie Kilens, Dimitri Meistermann, Bernard Martinet, Véronique Daguin, Audrey Donnart, Eric Charpentier, Laurent David, Ignacio Anegon, Carole Guillonneau
No posts were found with this tag.