Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Research Article

  • 2,590 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 253
  • 254
  • 255
  • …
  • 258
  • 259
  • Next →
Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer
Grit S. Herter-Sprie, … , Alec C. Kimmelman, Kwok-Kin Wong
Grit S. Herter-Sprie, … , Alec C. Kimmelman, Kwok-Kin Wong
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e87415. https://doi.org/10.1172/jci.insight.87415.
View: Text | PDF

Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer

  • Text
  • PDF
Abstract

Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non–small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.

Authors

Grit S. Herter-Sprie, Shohei Koyama, Houari Korideck, Josephine Hai, Jiehui Deng, Yvonne Y. Li, Kevin A. Buczkowski, Aaron K. Grant, Soumya Ullas, Kevin Rhee, Jillian D. Cavanaugh, Neermala Poudel Neupane, Camilla L. Christensen, Jan M. Herter, G. Mike Makrigiorgos, F. Stephen Hodi, Gordon J. Freeman, Glenn Dranoff, Peter S. Hammerman, Alec C. Kimmelman, Kwok-Kin Wong

×

Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to FTY720 during neuroinflammation
Hsing-Chuan Tsai, … , Christina W. Griffin, May H. Han
Hsing-Chuan Tsai, … , Christina W. Griffin, May H. Han
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e86462. https://doi.org/10.1172/jci.insight.86462.
View: Text | PDF

Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to FTY720 during neuroinflammation

  • Text
  • PDF
Abstract

Fingolimod (FTY720, Gilenya), a sphingosine-1-phosphate receptor (S1PR) modulator, is one of the first-line immunomodulatory therapies for treatment of relapsing-remitting multiple sclerosis (MS). Human S1PR1 variants have been reported to have functional heterogeneity in vitro, suggesting that S1PR1 function may influence FTY720 efficacy. In this study, we examined the influence of S1PR1 phosphorylation on response to FTY720 in neuroinflammation. We found that mice carrying a phosphorylation-defective S1pr1 gene [S1PR1(S5A) mice] were refractory to FTY720 treatment in MOG35-55-immunized and Th17-mediated experimental autoimmune encephalomyelitis (EAE) models. Long-term treatment with FTY720 induced significant lymphopenia and suppressed Th17 response in the peripheral immune system via downregulating STAT3 phosphorylation in both WT and S1PR1(S5A) mice. However, FTY720 did not effectively prevent neuroinflammation in the S1PR1(S5A) EAE mice as a result of encephalitogenic cells expressing C-C chemokine receptor 6 (CCR6). Combined treatment with FTY720 and anti-CCR6 delayed disease progression in S1PR1(S5A) EAE mice, suggesting that CCR6-mediated cell trafficking can overcome the effects of FTY720. This work may have translational relevance regarding FTY720 efficacy in MS patients and suggests that cell type–specific therapies may enhance therapeutic efficacy in MS.

Authors

Hsing-Chuan Tsai, Yingxiang Huang, Christopher S. Garris, Monica A. Moreno, Christina W. Griffin, May H. Han

×

Cardiac myosin-Th17 responses promote heart failure in human myocarditis
Jennifer M. Myers, … , Carol J. Cox, Madeleine W. Cunningham
Jennifer M. Myers, … , Carol J. Cox, Madeleine W. Cunningham
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e85851. https://doi.org/10.1172/jci.insight.85851.
View: Text | PDF

Cardiac myosin-Th17 responses promote heart failure in human myocarditis

  • Text
  • PDF
Abstract

In human myocarditis and its sequela dilated cardiomyopathy (DCM), the mechanisms and immune phenotype governing disease and subsequent heart failure are not known. Here, we identified a Th17 cell immunophenotype of human myocarditis/DCM with elevated CD4+IL17+ T cells and Th17-promoting cytokines IL-6, TGF-β, and IL-23 as well as GM-CSF–secreting CD4+ T cells. The Th17 phenotype was linked with the effects of cardiac myosin on CD14+ monocytes, TLR2, and heart failure. Persistent heart failure was associated with high percentages of IL-17–producing T cells and IL-17–promoting cytokines, and the myocarditis/DCM phenotype included significantly low percentages of FOXP3+ Tregs, which may contribute to disease severity. We demonstrate a potentially novel mechanism in human myocarditis/DCM in which TLR2 peptide ligands from human cardiac myosin stimulated exaggerated Th17-related cytokines including TGF-β, IL-6, and IL-23 from myocarditic CD14+ monocytes in vitro, and an anti-TLR2 antibody abrogated the cytokine response. Our translational study explains how an immune phenotype may be initiated by cardiac myosin TLR ligand stimulation of monocytes to generate Th17-promoting cytokines and development of pathogenic Th17 cells in human myocarditis and heart failure, and provides a rationale for targeting IL-17A as a therapeutic option.

Authors

Jennifer M. Myers, Leslie T. Cooper, David C. Kem, Stavros Stavrakis, Stanley D. Kosanke, Ethan M. Shevach, DeLisa Fairweather, Julie A. Stoner, Carol J. Cox, Madeleine W. Cunningham

×

PRL3-zumab, a first-in-class humanized antibody for cancer therapy
Min Thura, … , Jimmy So, Qi Zeng
Min Thura, … , Jimmy So, Qi Zeng
Published June 16, 2016
Citation Information: JCI Insight. 2016;1(9):e87607. https://doi.org/10.1172/jci.insight.87607.
View: Text | PDF

PRL3-zumab, a first-in-class humanized antibody for cancer therapy

  • Text
  • PDF
Abstract

Novel, tumor-specific drugs are urgently needed for a breakthrough in cancer therapy. Herein, we generated a first-in-class humanized antibody (PRL3-zumab) against PRL-3, an intracellular tumor-associated phosphatase upregulated in multiple human cancers, for unconventional cancer immunotherapies. We focused on gastric cancer (GC), wherein elevated PRL-3 mRNA levels significantly correlated with shortened overall survival of GC patients. PRL-3 protein was overexpressed in 85% of fresh-frozen clinical gastric tumor samples examined but not in patient-matched normal gastric tissues. Using human GC cell lines, we demonstrated that PRL3-zumab specifically blocked PRL-3+, but not PRL-3–, orthotopic gastric tumors. In this setting, PRL3-zumab had better therapeutic efficacy as a monotherapy, rather than simultaneous combination with 5-fluorouracil or 5-fluorouracil alone. PRL3-zumab could also prevent PRL-3+ tumor recurrence. Mechanistically, we found that intracellular PRL-3 antigens could be externalized to become “extracellular oncotargets” that serve as bait for PRL3-zumab binding to potentially bridge and recruit immunocytes into tumor microenvironments for killing effects on cancer cells. In summary, our results document a comprehensive cancer therapeutic approach to specific antibody-targeted therapy against the PRL-3 oncotarget as a case study for developing antibodies against other intracellular targets in drug discovery.

Authors

Min Thura, Abdul Qader Omer Al-Aidaroos, Wei Peng Yong, Koji Kono, Abhishek Gupta, You Bin Lin, Kousaku Mimura, Jean Paul Thiery, Boon Cher Goh, Patrick Tan, Ross Soo, Cheng William Hong, Lingzhi Wang, Suling Joyce Lin, Elya Chen, Sun Young Rha, Hyun Cheol Chung, Jie Li, Sayantani Nandi, Hiu Fung Yuen, Shu-Dong Zhang, Yeoh Khay Guan, Jimmy So, Qi Zeng

×

Distinct activation thresholds of human conventional and innate-like memory T cells
Chloe K. Slichter, … , Raphael Gottardo, Martin Prlic
Chloe K. Slichter, … , Raphael Gottardo, Martin Prlic
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e86292. https://doi.org/10.1172/jci.insight.86292.
View: Text | PDF

Distinct activation thresholds of human conventional and innate-like memory T cells

  • Text
  • PDF
Abstract

Conventional memory CD8+ T cells and mucosal-associated invariant T cells (MAIT cells) are found in blood, liver, and mucosal tissues and have similar effector potential following activation, specifically expression of IFN-γ and granzyme B. To better understand each subset’s unique contributions to immunity and pathology, we interrogated inflammation- and TCR-driven activation requirements using human memory CD8+ T and MAIT cells isolated from blood and mucosal tissue biopsies in ex vivo functional assays and single cell gene expression experiments. We found that MAIT cells had a robust IFN-γ and granzyme B response to inflammatory signals but limited responsiveness when stimulated directly via their TCR. Importantly, this is not due to an overall hyporesponsiveness to TCR signals. When delivered together, TCR and inflammatory signals synergize to elicit potent effector function in MAIT cells. This unique control of effector function allows MAIT cells to respond to the same TCR signal in a dichotomous and situation-specific manner. We propose that this could serve to prevent responses to antigen in noninflamed healthy mucosal tissue, while maintaining responsiveness and great sensitivity to inflammation-eliciting infections. We discuss the implications of these findings in context of inflammation-inducing damage to tissues such as BM transplant conditioning or HIV infection.

Authors

Chloe K. Slichter, Andrew McDavid, Hannah W. Miller, Greg Finak, Brenda J. Seymour, John P. McNevin, Gabriela Diaz, Julie L. Czartoski, M. Juliana McElrath, Raphael Gottardo, Martin Prlic

×

Quantitation of circulating satellite RNAs in pancreatic cancer patients
Takahiro Kishikawa, … , Ai Kotani, Kazuhiko Koike
Takahiro Kishikawa, … , Ai Kotani, Kazuhiko Koike
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e86646. https://doi.org/10.1172/jci.insight.86646.
View: Text | PDF

Quantitation of circulating satellite RNAs in pancreatic cancer patients

  • Text
  • PDF
Abstract

Pancreatic ductal adenocarcinoma (Pdac) is a malignancy with a poor prognosis due to difficulties in early detection. Although promising biomarkers are increasingly reported, such methods are not yet easy to apply clinically, mainly due to their low reproducibility or technical difficulties. In this study, we developed a convenient and sensitive method for quantifying aberrantly expressed satellite repeat RNAs in sera, which can be used to efficiently detect patients with Pdac. Here, we introduce a Tandem Repeat Amplification by nuclease Protection (TRAP) method combined with droplet digital PCR (ddPCR) to detect human satellite II (HSATII) RNAs, which are specifically expressed in human Pdacs at greater levels than normal tissues but are difficult to measure due to their repetitive sequences and irregularities. HSATII RNA core sequence levels in sera were significantly higher in Pdac patients compared with noncancer patients (median copy number: 14.75 and 3.17 per μl in the training set and 17.35 and 2.9 in the validation set, respectively). In addition, patients with intraductal papillary mucinous neoplasm (IPMN), a precancerous lesion of Pdac, could also be efficiently detected. This method can be routinely applied to screen patients with Pdac and high-risk patients, facilitating the development of preventive medicine for this disease.

Authors

Takahiro Kishikawa, Motoyuki Otsuka, Takeshi Yoshikawa, Motoko Ohno, Keisuke Yamamoto, Natsuyo Yamamoto, Ai Kotani, Kazuhiko Koike

×

Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22
Melody Abikhair, … , Diane Felsen, John A. Carucci
Melody Abikhair, … , Diane Felsen, John A. Carucci
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e86434. https://doi.org/10.1172/jci.insight.86434.
View: Text | PDF

Cyclosporine A immunosuppression drives catastrophic squamous cell carcinoma through IL-22

  • Text
  • PDF
Abstract

Immune-suppressed organ transplant recipients (OTRs) can develop catastrophic squamous cell carcinoma (SCC), characterized by multiple primary tumors, extensive body surface area involvement, or metastases. There are currently no curative systemic therapies available. We previously showed that IL-22 enhances SCC proliferation. Herein, we examined links between cyclosporine (CSA), IL-22, and SCC in patients, cell lines, and mice with UV light–induced SCC. Eighteen of 114 OTRs developed catastrophic SCC, which was strongly associated with CSA treatment. We found that CSA drives T cell polarization toward IL-22–producing T22 cells, and CSA treatment increased IL-22 receptor in SCC cells. SCC tissue from OTRs showed increased expression of IL-22RA1. CSA potentiated rescue by IL-22 of serum-starved SCC cells; treatment of SCC cells with IL-22 and CSA increased both their migratory and invasive capacity. In a UV-induced model of SCC in SKH-1 immunocompetent mice, treatment with anti–IL-22 antibody reduced tumor number and tumor burden. We found that catastrophic SCC in OTRs is associated with CSA use, which may be acting by favoring T22 polarization. Since anti–IL-22 antibody administration decreased tumor number and tumor burden in vivo, blockade of the IL-22 axis may be developed as a viable therapeutic option for catastrophic SCC.

Authors

Melody Abikhair, Hiroshi Mitsui, Valerie Yanofsky, Nazanin Roudiani, Channa Ovits, Teddy Bryan, Tatiana M. Oberyszyn, Kathleen L. Tober, Juana Gonzalez, James G. Krueger, Diane Felsen, John A. Carucci

×

Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure
Prasad R. Konkalmatt, … , Pedro A. Jose, Ines Armando
Prasad R. Konkalmatt, … , Pedro A. Jose, Ines Armando
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e85888. https://doi.org/10.1172/jci.insight.85888.
View: Text | PDF

Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure

  • Text
  • PDF
Abstract

Dopamine D2 receptor (DRD2) deficiency increases renal inflammation and blood pressure in mice. We show here that long-term renal-selective silencing of Drd2 using siRNA increases renal expression of proinflammatory and profibrotic factors and blood pressure in mice. To determine the effects of renal-selective rescue of Drd2 expression in mice, the renal expression of DRD2 was first silenced using siRNA and 14 days later rescued by retrograde renal infusion of adeno-associated virus (AAV) vector with DRD2. Renal Drd2 siRNA treatment decreased the renal expression of DRD2 protein by 55%, and DRD2 AAV treatment increased the renal expression of DRD2 protein by 7.5- to 10-fold. Renal-selective DRD2 rescue reduced the expression of proinflammatory factors and kidney injury, preserved renal function, and normalized systolic and diastolic blood pressure. These results demonstrate that the deleterious effects of renal-selective Drd2 silencing on renal function and blood pressure were rescued by renal-selective overexpression of DRD2. Moreover, the deleterious effects of 45-minute bilateral ischemia/reperfusion on renal function and blood pressure in mice were ameliorated by a renal-selective increase in DRD2 expression by the retrograde ureteral infusion of DRD2 AAV immediately after the induction of ischemia/reperfusion injury. Thus, 14 days after ischemia/reperfusion injury, the renal expression of profibrotic factors, serum creatinine, and blood pressure were lower in mice infused with DRD2 AAV than in those infused with control AAV. These results indicate an important role of renal DRD2 in limiting renal injury and preserving normal renal function and blood pressure.

Authors

Prasad R. Konkalmatt, Laureano D. Asico, Yanrong Zhang, Yu Yang, Cinthia Drachenberg, Xiaoxu Zheng, Fei Han, Pedro A. Jose, Ines Armando

×

Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells
Shijun Hu, … , Michael P. Snyder, Joseph C. Wu
Shijun Hu, … , Michael P. Snyder, Joseph C. Wu
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e85558. https://doi.org/10.1172/jci.insight.85558.
View: Text | PDF

Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells

  • Text
  • PDF
Abstract

Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4, SOX2, C-MYC, and KLF4). Patient-specific iPSC derivatives (e.g., neuronal, cardiac, hepatic, muscular, and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study, we aimed to evaluate whether the cellular origin can affect the differentiation, in vivo behavior, and single-cell gene expression signatures of human iPSC–derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs), ECs (EC-iPSCs), and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin, BMP4, bFGF, and VEGF. EC-iPSCs at early passage (10 < P < 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC–ECs were recovered with a higher percentage of CD31+ population and expressed higher EC-specific gene expression markers (PECAM1, KDR, and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC–ECs maintained a higher CD31+ population than FB-iPSC–ECs and CPC-iPSC–ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence, the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.

Authors

Shijun Hu, Ming-Tao Zhao, Fereshteh Jahanbani, Ning-Yi Shao, Won Hee Lee, Haodong Chen, Michael P. Snyder, Joseph C. Wu

×

Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase π
David H. McMillan, … , Vikas Anathy, Yvonne M.W. Janssen-Heininger
David H. McMillan, … , Vikas Anathy, Yvonne M.W. Janssen-Heininger
Published June 2, 2016
Citation Information: JCI Insight. 2016;1(8):e85717. https://doi.org/10.1172/jci.insight.85717.
View: Text | PDF

Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione-S-transferase π

  • Text
  • PDF
Abstract

Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp–/– mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF.

Authors

David H. McMillan, Jos L.J. van der Velden, Karolyn G. Lahue, Xi Qian, Robert W. Schneider, Martina S. Iberg, James D. Nolin, Sarah Abdalla, Dylan T. Casey, Kenneth D. Tew, Danyelle M. Townsend, Colin J. Henderson, C. Roland Wolf, Kelly J. Butnor, Douglas J. Taatjes, Ralph C. Budd, Charles G. Irvin, Albert van der Vliet, Stevenson Flemer, Vikas Anathy, Yvonne M.W. Janssen-Heininger

×
  • ← Previous
  • 1
  • 2
  • …
  • 253
  • 254
  • 255
  • …
  • 258
  • 259
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts