Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 4,127 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 146
  • 147
  • 148
  • …
  • 412
  • 413
  • Next →
Endothelial cell polarity and extracellular matrix composition require functional ATP6AP2 during developmental and pathological angiogenesis
Nehal R. Patel, Rajan K C, Avery Blanks, Yisu Li, Minolfa C. Prieto, Stryder M. Meadows
Nehal R. Patel, Rajan K C, Avery Blanks, Yisu Li, Minolfa C. Prieto, Stryder M. Meadows
View: Text | PDF

Endothelial cell polarity and extracellular matrix composition require functional ATP6AP2 during developmental and pathological angiogenesis

  • Text
  • PDF
Abstract

The (Pro)renin receptor ([P]RR), also known as ATP6AP2, is a single-transmembrane protein that is implicated in a multitude of biological processes. However, the exact role of ATP6AP2 during blood vessel development remains largely undefined. Here, we use an inducible endothelial cell–specific (EC-specific) Atp6ap2-KO mouse model to investigate the role of ATP6AP2 during both physiological and pathological angiogenesis in vivo. We observed that postnatal deletion of Atp6ap2 in ECs results in cell migration defects, loss of tip cell polarity, and subsequent impairment of retinal angiogenesis. In vitro, Atp6ap2-deficient ECs similarly displayed reduced cell migration, impaired sprouting, and defective cell polarity. Transcriptional profiling of ECs isolated from Atp6ap2 mutant mice further indicated regulatory roles in angiogenesis, cell migration, and extracellular matrix composition. Mechanistically, we provided evidence that expression of various extracellular matrix components is controlled by ATP6AP2 via the ERK pathway. Furthermore, Atp6ap2-deficient retinas exhibited reduced revascularization in an oxygen-induced retinopathy model. Collectively, our results demonstrate a critical role of ATP6AP2 as a regulator of developmental and pathological angiogenesis.

Authors

Nehal R. Patel, Rajan K C, Avery Blanks, Yisu Li, Minolfa C. Prieto, Stryder M. Meadows

×

Allele-specific silencing of the gain-of-function mutation in Huntington’s disease using CRISPR/Cas9
Jun Wan Shin, Eun Pyo Hong, Seri S. Park, Doo Eun Choi, Ihn Sik Seong, Madelynn N. Whittaker, Benjamin P. Kleinstiver, Richard Z. Chen, Jong-Min Lee
Jun Wan Shin, Eun Pyo Hong, Seri S. Park, Doo Eun Choi, Ihn Sik Seong, Madelynn N. Whittaker, Benjamin P. Kleinstiver, Richard Z. Chen, Jong-Min Lee
View: Text | PDF

Allele-specific silencing of the gain-of-function mutation in Huntington’s disease using CRISPR/Cas9

  • Text
  • PDF
Abstract

Dominant gain-of-function mechanisms in Huntington’s disease (HD) suggest that selective silencing of mutant HTT produces robust therapeutic benefits. Here, capitalizing on exonic protospacer adjacent motif–altering (PAM-altering) SNP (PAS), we developed an allele-specific CRISPR/Cas9 strategy to permanently inactivate mutant HTT through nonsense-mediated decay (NMD). Comprehensive sequence/haplotype analysis identified SNP-generated NGG PAM sites on exons of common HTT haplotypes in HD subjects, revealing a clinically relevant PAS-based mutant-specific CRISPR/Cas9 strategy. Alternative allele of rs363099 (29th exon) eliminates the NGG PAM site on the most frequent normal HTT haplotype in HD, permitting mutant-specific CRISPR/Cas9 therapeutics in a predicted ~20% of HD subjects with European ancestry. Our rs363099-based CRISPR/Cas9 showed perfect allele specificity and good targeting efficiencies in patient-derived cells. Dramatically reduced mutant HTT mRNA and complete loss of mutant protein suggest that our allele-specific CRISPR/Cas9 strategy inactivates mutant HTT through NMD. In addition, GUIDE-Seq analysis and subsequent validation experiments support high levels of on-target gene specificity. Our data demonstrate a significant target population, complete mutant specificity, decent targeting efficiency in patient-derived cells, and minimal off-target effects on protein-coding genes, proving the concept of PAS-based allele-specific NMD-CRISPR/Cas9 and supporting its therapeutic potential in HD.

Authors

Jun Wan Shin, Eun Pyo Hong, Seri S. Park, Doo Eun Choi, Ihn Sik Seong, Madelynn N. Whittaker, Benjamin P. Kleinstiver, Richard Z. Chen, Jong-Min Lee

×

Genetic inhibition of serum glucocorticoid kinase 1 prevents obesity-related atrial fibrillation
Aneesh Bapat, Guoping Li, Ling Xiao, Ashish Yeri, Maarten Hulsmans, Jana Grune, Masahiro Yamazoe, Maximilian J. Schloss, Yoshiko Iwamoto, Justin Tedeschi, Xinyu Yang, Matthias Nahrendorf, Anthony Rosenzweig, Patrick T. Ellinor, Saumya Das, David Milan
Aneesh Bapat, Guoping Li, Ling Xiao, Ashish Yeri, Maarten Hulsmans, Jana Grune, Masahiro Yamazoe, Maximilian J. Schloss, Yoshiko Iwamoto, Justin Tedeschi, Xinyu Yang, Matthias Nahrendorf, Anthony Rosenzweig, Patrick T. Ellinor, Saumya Das, David Milan
View: Text | PDF

Genetic inhibition of serum glucocorticoid kinase 1 prevents obesity-related atrial fibrillation

  • Text
  • PDF
Abstract

Obesity is an important risk factor for atrial fibrillation (AF), but a better mechanistic understanding of obesity-related atrial fibrillation is required. Serum glucocorticoid kinase 1 (SGK1) is a kinase positioned within multiple obesity-related pathways, and prior work has shown a pathologic role of SGK1 signaling in ventricular arrhythmias. We validated a mouse model of obesity-related AF using wild-type mice fed a high-fat diet. RNA sequencing of atrial tissue demonstrated substantial differences in gene expression, with enrichment of multiple SGK1-related pathways, and we showed upregulated of SGK1 transcription, activation, and signaling in obese atria. Mice expressing a cardiac specific dominant-negative SGK1 were protected from obesity-related AF, through effects on atrial electrophysiology, action potential characteristics, structural remodeling, inflammation, and sodium current. Overall, this study demonstrates the promise of targeting SGK1 in a mouse model of obesity-related AF.

Authors

Aneesh Bapat, Guoping Li, Ling Xiao, Ashish Yeri, Maarten Hulsmans, Jana Grune, Masahiro Yamazoe, Maximilian J. Schloss, Yoshiko Iwamoto, Justin Tedeschi, Xinyu Yang, Matthias Nahrendorf, Anthony Rosenzweig, Patrick T. Ellinor, Saumya Das, David Milan

×

Secondary bile acids mediate high-fat diet–induced upregulation of R-spondin 3 and intestinal epithelial proliferation
Ji-Yao Li, Merritt Gillilland III, Allen A. Lee, Xiaoyin Wu, Shi-Yi Zhou, Chung Owyang
Ji-Yao Li, Merritt Gillilland III, Allen A. Lee, Xiaoyin Wu, Shi-Yi Zhou, Chung Owyang
View: Text | PDF | Retraction

Secondary bile acids mediate high-fat diet–induced upregulation of R-spondin 3 and intestinal epithelial proliferation

  • Text
  • PDF
Abstract

A high-fat diet (HFD) contributes to the increased incidence of colorectal cancer, but the mechanisms are unclear. We found that R-spondin 3 (Rspo3), a ligand for leucine-rich, repeat-containing GPCR 4 and 5 (LGR4 and LGR5), was the main subtype of R-spondins and was produced by myofibroblasts beneath the crypts in the intestine. HFD upregulated colonic Rspo3, LGR4, LGR5, and β-catenin gene expression in specific pathogen–free rodents, but not in germ-free mice, and the upregulations were prevented by the bile acid (BA) binder cholestyramine or antibiotic treatment, indicating mediation by both BA and gut microbiota. Cholestyramine or antibiotic treatments prevented HFD-induced enrichment of members of the Lachnospiraceae and Rumincoccaceae, which can transform primary BA into secondary BA. Oral administration of deoxycholic acid (DCA), or inoculation of a combination of the BA deconjugator Lactobacillus plantarum and 7α-dehydroxylase–containing Clostridium scindens with an HFD to germ-free mice increased serum DCA and colonic Rspo3 mRNA levels, indicating that formation of secondary BA by gut microbiota is responsible for HFD-induced upregulation of Rspo3. In primary myofibroblasts, DCA increased Rspo3 mRNA via TGR5. Finally, we showed that cholestyramine or conditional deletion of Rspo3 prevented HFD- or DCA-induced intestinal proliferation. We conclude that secondary BA is responsible for HFD-induced upregulation of Rspo3, which, in turn, mediates HFD-induced intestinal epithelial proliferation.

Authors

Ji-Yao Li, Merritt Gillilland III, Allen A. Lee, Xiaoyin Wu, Shi-Yi Zhou, Chung Owyang

×

Mineralocorticoid receptor antagonists and glucocorticoids differentially affect skeletal muscle inflammation and pathology in muscular dystrophy
Zachary M. Howard, Chetan K. Gomatam, Charles P. Rabolli, Jeovanna Lowe, Arden B. Piepho, Shyam S. Bansal, Federica Accornero, Jill A. Rafael-Fortney
Zachary M. Howard, Chetan K. Gomatam, Charles P. Rabolli, Jeovanna Lowe, Arden B. Piepho, Shyam S. Bansal, Federica Accornero, Jill A. Rafael-Fortney
View: Text | PDF

Mineralocorticoid receptor antagonists and glucocorticoids differentially affect skeletal muscle inflammation and pathology in muscular dystrophy

  • Text
  • PDF
Abstract

Mineralocorticoid receptor antagonists (MRAs) slow cardiomyopathy in patients with Duchenne muscular dystrophy (DMD) and improve skeletal muscle pathology and function in dystrophic mice. However, glucocorticoids, known antiinflammatory drugs, remain a standard of care for DMD, despite substantial side effects. Exact mechanisms underlying mineralocorticoid receptor (MR) signaling contribution to dystrophy are unknown. Whether MRAs affect inflammation in dystrophic muscles and how they compare with glucocorticoids is unclear. The MRA spironolactone and glucocorticoid prednisolone were each administered for 1 week to dystrophic mdx mice during peak skeletal muscle necrosis to compare effects on inflammation. Both drugs reduced cytokine levels in mdx quadriceps, but prednisolone elevated diaphragm cytokines. Spironolactone did not alter myeloid populations in mdx quadriceps or diaphragms, but prednisolone increased F4/80hi macrophages. Both spironolactone and prednisolone reduced inflammatory gene expression in myeloid cells sorted from mdx quadriceps, while prednisolone additionally perturbed cell cycle genes. Spironolactone also repressed myeloid expression of the gene encoding fibronectin, while prednisolone increased its expression. Overall, spironolactone exhibits antiinflammatory properties without altering leukocyte distribution within skeletal muscles, while prednisolone suppresses quadriceps cytokines but increases diaphragm cytokines and pathology. Antiinflammatory properties of MRAs and different limb and respiratory muscle responses to glucocorticoids should be considered when optimizing treatments for patients with DMD.

Authors

Zachary M. Howard, Chetan K. Gomatam, Charles P. Rabolli, Jeovanna Lowe, Arden B. Piepho, Shyam S. Bansal, Federica Accornero, Jill A. Rafael-Fortney

×

Fcγ receptor–mediated cross-linking codefines the immunostimulatory activity of anti-human CD96 antibodies
Anne Rogel, Fathima M. Ibrahim, Stephen M. Thirdborough, Florence Renart-Depontieu, Charles N. Birts, Sarah L. Buchan, Xavier Preville, Emma V. King, Aymen Al-Shamkhani
Anne Rogel, Fathima M. Ibrahim, Stephen M. Thirdborough, Florence Renart-Depontieu, Charles N. Birts, Sarah L. Buchan, Xavier Preville, Emma V. King, Aymen Al-Shamkhani
View: Text | PDF

Fcγ receptor–mediated cross-linking codefines the immunostimulatory activity of anti-human CD96 antibodies

  • Text
  • PDF
Abstract

New strategies that augment T cell responses are required to broaden the therapeutic arsenal against cancer. CD96, TIGIT, and CD226 are receptors that bind to a communal ligand, CD155, and transduce either inhibitory or activating signals. The function of TIGIT and CD226 is established, whereas the role of CD96 remains ambiguous. Using a panel of engineered antibodies, we discovered that the T cell stimulatory activity of anti-CD96 antibodies requires antibody cross-linking and is potentiated by Fcγ receptors. Thus, soluble “Fc silent” anti-CD96 antibodies failed to stimulate human T cells, whereas the same antibodies were stimulatory after coating onto plastic surfaces. Remarkably, the activity of soluble anti-CD96 antibodies was reinstated by engineering the Fc domain to a human IgG1 isotype, and it was dependent on antibody trans-cross-linking by FcγRI. In contrast, neither human IgG2 nor variants with increased Fcγ receptor IIB binding possessed stimulatory activity. Anti-CD96 antibodies acted directly on T cells and augmented gene expression networks associated with T cell activation, leading to proliferation, cytokine secretion, and resistance to Treg suppression. Furthermore, CD96 expression correlated with survival in HPV+ head and neck squamous cell carcinoma, and its cross-linking activated tumor-infiltrating T cells, thus highlighting the potential of anti-CD96 antibodies in cancer immunotherapy.

Authors

Anne Rogel, Fathima M. Ibrahim, Stephen M. Thirdborough, Florence Renart-Depontieu, Charles N. Birts, Sarah L. Buchan, Xavier Preville, Emma V. King, Aymen Al-Shamkhani

×

Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy
Brian L. Lin, Joseph Y. Shin, William P.D. Jeffreys, Nadan Wang, Clarisse A. Lukban, Megan C. Moorer, Esteban Velarde, Olivia A. Hanselman, Seoyoung Kwon, Suraj Kannan, Ryan C. Riddle, Christopher W. Ward, Steven S. Pullen, Antonio Filareto, David A. Kass
Brian L. Lin, Joseph Y. Shin, William P.D. Jeffreys, Nadan Wang, Clarisse A. Lukban, Megan C. Moorer, Esteban Velarde, Olivia A. Hanselman, Seoyoung Kwon, Suraj Kannan, Ryan C. Riddle, Christopher W. Ward, Steven S. Pullen, Antonio Filareto, David A. Kass
View: Text | PDF

Pharmacological TRPC6 inhibition improves survival and muscle function in mice with Duchenne muscular dystrophy

  • Text
  • PDF
Abstract

Gene mutations causing loss of dystrophin result in the severe muscle disease known as Duchenne muscular dystrophy (DMD). Despite efforts at genetic repair, DMD therapy remains largely palliative. Loss of dystrophin destabilizes the sarcolemmal membrane, inducing mechanosensitive cation channels to increase calcium entry and promote cell damage and, eventually, muscle dysfunction. One putative channel is transient receptor potential canonical 6 (TRPC6); we have shown that TRPC6 contributed to abnormal force and calcium stress-responses in cardiomyocytes from mice lacking dystrophin that were haplodeficient for utrophin (mdx/utrn+/– [HET] mice). Here, we show in both the HET mouse and the far more severe homozygous mdx/utrn–/– mouse that TRPC6 gene deletion or its selective pharmacologic inhibition (by BI 749327) prolonged survival 2- to 3-fold, improving skeletal and cardiac muscle and bone defects. Gene pathways reduced by BI 749327 treatment most prominently regulated fat metabolism and TGF-β1 signaling. These results support the testing of TRPC6 inhibitors in human trials for other diseases as a novel DMD therapy.

Authors

Brian L. Lin, Joseph Y. Shin, William P.D. Jeffreys, Nadan Wang, Clarisse A. Lukban, Megan C. Moorer, Esteban Velarde, Olivia A. Hanselman, Seoyoung Kwon, Suraj Kannan, Ryan C. Riddle, Christopher W. Ward, Steven S. Pullen, Antonio Filareto, David A. Kass

×

CD11c+ myeloid cell exosomes reduce intestinal inflammation during colitis
Kaylyn M. Bauer, Morgan C. Nelson, William W. Tang, Tyson R. Chiaro, D. Garrett Brown, Arevik Ghazaryan, Soh-Hyun Lee, Allison M. Weis, Jennifer H. Hill, Kendra A. Klag, Van B. Tran, Jacob W. Thompson, Andrew G. Ramstead, Josh K. Monts, James E. Marvin, Margaret Alexander, Warren P. Voth, W. Zac Stephens, Diane M. Ward, Aaron C. Petrey, June L. Round, Ryan M. O’Connell
Kaylyn M. Bauer, Morgan C. Nelson, William W. Tang, Tyson R. Chiaro, D. Garrett Brown, Arevik Ghazaryan, Soh-Hyun Lee, Allison M. Weis, Jennifer H. Hill, Kendra A. Klag, Van B. Tran, Jacob W. Thompson, Andrew G. Ramstead, Josh K. Monts, James E. Marvin, Margaret Alexander, Warren P. Voth, W. Zac Stephens, Diane M. Ward, Aaron C. Petrey, June L. Round, Ryan M. O’Connell
View: Text | PDF

CD11c+ myeloid cell exosomes reduce intestinal inflammation during colitis

  • Text
  • PDF
Abstract

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.

Authors

Kaylyn M. Bauer, Morgan C. Nelson, William W. Tang, Tyson R. Chiaro, D. Garrett Brown, Arevik Ghazaryan, Soh-Hyun Lee, Allison M. Weis, Jennifer H. Hill, Kendra A. Klag, Van B. Tran, Jacob W. Thompson, Andrew G. Ramstead, Josh K. Monts, James E. Marvin, Margaret Alexander, Warren P. Voth, W. Zac Stephens, Diane M. Ward, Aaron C. Petrey, June L. Round, Ryan M. O’Connell

×

Full-length antithrombin frameshift variant with aberrant C-terminus causes endoplasmic reticulum retention with a dominant-negative effect
Carlos Bravo-Pérez, Mara Toderici, Joseph E. Chambers, José A. Martínez-Menárguez, Pedro Garrido-Rodriguez, Horacio Pérez-Sanchez, Belén de la Morena-Barrio, José Padilla, Antonia Miñano, Rosa Cifuentes-Riquelme, Vicente Vicente, Maria L. Lozano, Stefan J. Marciniak, Maria Eugenia de la Morena-Barrio, Javier Corral
Carlos Bravo-Pérez, Mara Toderici, Joseph E. Chambers, José A. Martínez-Menárguez, Pedro Garrido-Rodriguez, Horacio Pérez-Sanchez, Belén de la Morena-Barrio, José Padilla, Antonia Miñano, Rosa Cifuentes-Riquelme, Vicente Vicente, Maria L. Lozano, Stefan J. Marciniak, Maria Eugenia de la Morena-Barrio, Javier Corral
View: Text | PDF

Full-length antithrombin frameshift variant with aberrant C-terminus causes endoplasmic reticulum retention with a dominant-negative effect

  • Text
  • PDF
Abstract

Antithrombin, a major endogenous anticoagulant, is a serine protease inhibitor (serpin). We characterized the biological and clinical impact of variants involving C-terminal antithrombin. We performed comprehensive molecular, cellular, and clinical characterization of patients with C-terminal antithrombin variants from a cohort of 444 unrelated individuals with confirmed antithrombin deficiency. We identified 17 patients carrying 12 C-terminal variants, 5 of whom had the p.Arg445Serfs*17 deletion. Five missense variants caused qualitative deficiency, and 7, including 4 insertion-deletion variants, induced severe quantitative deficiency, particularly p.Arg445Serfs*17 (antithrombin <40%). This +1 frameshift variant had a molecular size similar to that of WT antithrombin but possessed a different C-terminus. Morphologic and cotransfection experiments showed that recombinant p.Arg445Serfs*17 was retained at the endoplasmic reticulum and had a dominant-negative effect on WT antithrombin. Characterization of different 1+ frameshift, aberrant C-terminal variants revealed that protein secretion was determined by frameshift site. The introduction of Pro441 in the aberrant C-terminus, shared by 5 efficiently secreted variants, partially rescued p.Arg445Serfs*17 secretion. C-terminal antithrombin mutants have notable heterogeneity, related to variant type and localization. Aberrant C-terminal variants caused by 1+ frameshift, with similar size as WT antithrombin, may be secreted or not, depending on frameshift site. The severe clinical phenotypes of these genetic changes are consistent with their dominant-negative effects.

Authors

Carlos Bravo-Pérez, Mara Toderici, Joseph E. Chambers, José A. Martínez-Menárguez, Pedro Garrido-Rodriguez, Horacio Pérez-Sanchez, Belén de la Morena-Barrio, José Padilla, Antonia Miñano, Rosa Cifuentes-Riquelme, Vicente Vicente, Maria L. Lozano, Stefan J. Marciniak, Maria Eugenia de la Morena-Barrio, Javier Corral

×

Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury
Ting-Xi Yu, Sudhakar Kalakonda, Xiangzheng Liu, Naomi Han, Hee K. Chung, Lan Xiao, Jaladanki N. Rao, Tong-Chuan He, Jean-Pierre Raufman, Jian-Ying Wang
Ting-Xi Yu, Sudhakar Kalakonda, Xiangzheng Liu, Naomi Han, Hee K. Chung, Lan Xiao, Jaladanki N. Rao, Tong-Chuan He, Jean-Pierre Raufman, Jian-Ying Wang
View: Text | PDF

Long noncoding RNA uc.230/CUG-binding protein 1 axis sustains intestinal epithelial homeostasis and response to tissue injury

  • Text
  • PDF
Abstract

Intestinal epithelial integrity is commonly disrupted in patients with critical disorders, but the exact underlying mechanisms are unclear. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control different cell functions and are involved in pathologies. Here, we investigated the role of T-UCRs in intestinal epithelial homeostasis and identified T-UCR uc.230 as a major regulator of epithelial renewal, apoptosis, and barrier function. Compared with controls, intestinal mucosal tissues from patients with ulcerative colitis and from mice with colitis or fasted for 48 hours had increased levels of uc.230. Silencing uc.230 inhibited the growth of intestinal epithelial cells (IECs) and organoids and caused epithelial barrier dysfunction. Silencing uc.230 also increased IEC vulnerability to apoptosis, whereas increasing uc.230 levels protected IECs against cell death. In mice with colitis, reduced uc.230 levels enhanced mucosal inflammatory injury and delayed recovery. Mechanistic studies revealed that uc.230 increased CUG-binding protein 1 (CUGBP1) by acting as a natural decoy RNA for miR-503, which interacts with Cugbp1 mRNA and represses its translation. These findings indicate that uc.230 sustains intestinal mucosal homeostasis by promoting epithelial renewal and barrier function and that it protects IECs against apoptosis by serving as a natural sponge for miR-503, thereby preserving CUGBP1 expression.

Authors

Ting-Xi Yu, Sudhakar Kalakonda, Xiangzheng Liu, Naomi Han, Hee K. Chung, Lan Xiao, Jaladanki N. Rao, Tong-Chuan He, Jean-Pierre Raufman, Jian-Ying Wang

×
  • ← Previous
  • 1
  • 2
  • …
  • 146
  • 147
  • 148
  • …
  • 412
  • 413
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts