Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Development

  • 103 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 10
  • 11
  • Next →
Altered cartilage gene expression in Aga2 OI mouse negatively impacts linear growth through Sox9 and FGF signaling
Jennifer Zieba, Lisette Nevarez, Davis Wachtell, Jorge H. Martin, Alexander Kot, Sereen Wong, Daniel H. Cohn, Deborah Krakow
Jennifer Zieba, Lisette Nevarez, Davis Wachtell, Jorge H. Martin, Alexander Kot, Sereen Wong, Daniel H. Cohn, Deborah Krakow
View: Text | PDF

Altered cartilage gene expression in Aga2 OI mouse negatively impacts linear growth through Sox9 and FGF signaling

  • Text
  • PDF
Abstract

Osteogenesis imperfecta (OI), brittle bone disease, is a disorder characterized by bone fragility and increased fracture incidence. All forms of OI also feature short stature, implying an effect on endochondral ossification. Using the Aga2+/- mouse, which has a mutation in type I collagen, we show an affected growth plate primarily due to a shortened proliferative zone. We used scRNAseq analysis of tibial and femoral growth plate tissues to understand transcriptional consequences on growth plate cell types. We show that perichondrial cells, which express abundant type I procollagen, and growth plate chondrocytes, which were found to express low amounts of type I procollagen, had ER stress and dysregulation of the same UPR pathway as previously demonstrated in osteoblasts. Aga2+/- proliferating chondrocytes showed increased FGF and MAPK signaling, findings consistent with accelerated differentiation. There was also increased Sox9 expression throughout the growth plate, which is expected to accelerate early chondrocyte differentiation but reduce late hypertrophic differentiation. These data reveal that mutant type I collagen expression in OI has a previously unappreciated impact on the cartilage growth plate. These effects on endochondral ossification indicate that OI is a biologically complex phenotype going beyond its known impacts on bone to negatively affect linear growth.

Authors

Jennifer Zieba, Lisette Nevarez, Davis Wachtell, Jorge H. Martin, Alexander Kot, Sereen Wong, Daniel H. Cohn, Deborah Krakow

×

The Semaphorin 3A-Neuropilin-1 Pathway Promotes Clonogenic Growth of Glioblastoma via Activation of TGFβ Signaling
Hye-Min Jeon, Yong Jae Shin, Jaehyun Lee, Nakho Chang, Dong-Hun Woo, Won Jun Lee, Dayna Nguyen, Wonyoung Kang, Hee Jin Cho, Heekyoung Yang, Jin-Ku Lee, Jason K. Sa, Yeri Lee, Donggeon Kim, Benjamin W. Purow, Yeup Yoon, Do-Hyun Nam, Jeongwu Lee
Hye-Min Jeon, Yong Jae Shin, Jaehyun Lee, Nakho Chang, Dong-Hun Woo, Won Jun Lee, Dayna Nguyen, Wonyoung Kang, Hee Jin Cho, Heekyoung Yang, Jin-Ku Lee, Jason K. Sa, Yeri Lee, Donggeon Kim, Benjamin W. Purow, Yeup Yoon, Do-Hyun Nam, Jeongwu Lee
View: Text | PDF

The Semaphorin 3A-Neuropilin-1 Pathway Promotes Clonogenic Growth of Glioblastoma via Activation of TGFβ Signaling

  • Text
  • PDF
Abstract

Glioblastoma (GBM) is the most lethal brain cancer with a dismal prognosis. Stem-like GBM cells (GSCs) are a major driver of GBM propagation and recurrence, thus understanding the molecular mechanisms that promote GSCs may lead to effective therapeutic approaches. Through in vitro clonogenic growth-based assays, we determined mitogenic activities of the ligand molecules that are implicated in neural development. We have identified that Semaphorin 3A (Sema3A), originally known as an axon guidance molecule in the central nervous system, promotes clonogenic growth of GBM cells but not normal neural progenitor cells (NPCs). Mechanistically, Sema3A binds to its receptor Neuropilin-1 (NRP1) and facilitates an interaction between NRP1 and TGF receptor 1 (TGFR1), which in turn leads to activation of canonical TGF signaling in both GSCs and NPCs. TGF signaling enhances self-renewal and survival of GBM tumors through induction of key stem cell factors, but it evokes cytostatic responses in NPCs. Blockage of the Sema3A-NRP1 axis via shRNA-mediated knockdown of Sema3A or NRP1 impeded clonogenic growth and TGF pathway activity in GSCs and inhibited tumor growth in vivo. Taken together, these findings suggest that the Sema3A-NRP1-TGFR1 signaling axis is a critical regulator of GSC propagation and a potential therapeutic target for GBM.

Authors

Hye-Min Jeon, Yong Jae Shin, Jaehyun Lee, Nakho Chang, Dong-Hun Woo, Won Jun Lee, Dayna Nguyen, Wonyoung Kang, Hee Jin Cho, Heekyoung Yang, Jin-Ku Lee, Jason K. Sa, Yeri Lee, Donggeon Kim, Benjamin W. Purow, Yeup Yoon, Do-Hyun Nam, Jeongwu Lee

×

An integrated single-cell analysis of human adrenal cortex development
Ignacio del Valle, Matthew D. Young, Gerda Kildisiute, Olumide K. Ogunbiyi, Federica Buonocore, Ian C. Simcock, Eleonora Khabirova, Berta Crespo, Nadjeda Moreno, Tony Brooks, Paola Niola, Katherine Swarbrick, Jenifer P. Suntharalingham, Sinead M. McGlacken-Byrne, Owen J. Arthurs, Sam Behjati, John C. Achermann
Ignacio del Valle, Matthew D. Young, Gerda Kildisiute, Olumide K. Ogunbiyi, Federica Buonocore, Ian C. Simcock, Eleonora Khabirova, Berta Crespo, Nadjeda Moreno, Tony Brooks, Paola Niola, Katherine Swarbrick, Jenifer P. Suntharalingham, Sinead M. McGlacken-Byrne, Owen J. Arthurs, Sam Behjati, John C. Achermann
View: Text | PDF

An integrated single-cell analysis of human adrenal cortex development

  • Text
  • PDF
Abstract

The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.

Authors

Ignacio del Valle, Matthew D. Young, Gerda Kildisiute, Olumide K. Ogunbiyi, Federica Buonocore, Ian C. Simcock, Eleonora Khabirova, Berta Crespo, Nadjeda Moreno, Tony Brooks, Paola Niola, Katherine Swarbrick, Jenifer P. Suntharalingham, Sinead M. McGlacken-Byrne, Owen J. Arthurs, Sam Behjati, John C. Achermann

×

Multi-omics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and non-canonical Wnt signaling dysregulation
Isabella Lin, Angela Wei, Zain Awamleh, Meghna Singh, Aileen Ning, Analeyla Herrera, Bianca E. Russell, Rosanna Weksberg, Valerie A. Arboleda
Isabella Lin, Angela Wei, Zain Awamleh, Meghna Singh, Aileen Ning, Analeyla Herrera, Bianca E. Russell, Rosanna Weksberg, Valerie A. Arboleda
View: Text | PDF

Multi-omics of Bohring-Opitz syndrome truncating ASXL1 mutations identify canonical and non-canonical Wnt signaling dysregulation

  • Text
  • PDF
Abstract

ASXL1 (Additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS, OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, characteristic facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies including heart defects and severe skeletal defects giving rise to a typical ‘BOS posture’. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia (AML). We use primary cells from BOS individuals (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multi-omics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data shows that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, a planar cell polarity pathway protein that acts through non-canonical Wnt signaling to direct tissue patterning and cell migration. This multi-omics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.

Authors

Isabella Lin, Angela Wei, Zain Awamleh, Meghna Singh, Aileen Ning, Analeyla Herrera, Bianca E. Russell, Rosanna Weksberg, Valerie A. Arboleda

×

Loss of function variant in SPIN4 causes an X-linked overgrowth syndrome
Julian C. Lui, Jacob Wagner, Elaine Zhou, Lijin Dong, Kevin M. Barnes, Youn Hee Jee, Jeffrey Baron
Julian C. Lui, Jacob Wagner, Elaine Zhou, Lijin Dong, Kevin M. Barnes, Youn Hee Jee, Jeffrey Baron
View: Text | PDF

Loss of function variant in SPIN4 causes an X-linked overgrowth syndrome

  • Text
  • PDF
Abstract

Overgrowth syndromes can be caused by pathogenic genetic variants in epigenetic writers, such as DNA and histone methyltransferases. However, no overgrowth disorder has previously been ascribed to variants in a gene that acts primarily as an epigenetic reader. Here, we studied a male individual with generalized overgrowth of prenatal onset. Exome sequencing identified a hemizygous frameshift variant in Spindlin 4 (SPIN4), with X-linked inheritance. We found evidence that SPIN4 binds specific histone modifications, promotes canonical WNT signaling, and inhibits cell proliferation in vitro and that the identified frameshift variant had lost all of these functions. Ablation of Spin4 in mice recapitulated the human phenotype with generalized overgrowth, including increased longitudinal bone growth. Growth plate analysis revealed increased cell proliferation in the proliferative zone and an increased number of progenitor chondrocytes in the resting zone. We also found evidence of decreased canonical Wnt signaling in growth plate chondrocytes, providing a potential explanation for the increased number of resting zone chondrocytes. Taken together, our findings provide strong evidence that SPIN4 is an epigenetic reader that negatively regulates mammalian body growth, and that loss of SPIN4 causes an overgrowth syndrome in humans, expanding our knowledge of the epigenetic regulation of human growth.

Authors

Julian C. Lui, Jacob Wagner, Elaine Zhou, Lijin Dong, Kevin M. Barnes, Youn Hee Jee, Jeffrey Baron

×

EPIREGULIN creates a developmental niche for spatially organized human intestinal enteroids
Charlie J. Childs, Emily M. Holloway, Caden W. Sweet, Yu-Hwai Tsai, Angeline Wu, Abigail Vallie, Madeline K. Eiken, Meghan M. Capeling, Rachel K. Zwick, Brisa Palikuqi, Coralie Trentesaux, Joshua H. Wu, Oscar Pellon-Cardenas, Charles J. Zhang, Ian A. Glass, Claudia Loebel, Qianhui Yu, J. Gray Camp, Jonathan Z. Sexton, Ophir D. Klein, Michael P. Verzi, Jason R. Spence
Charlie J. Childs, Emily M. Holloway, Caden W. Sweet, Yu-Hwai Tsai, Angeline Wu, Abigail Vallie, Madeline K. Eiken, Meghan M. Capeling, Rachel K. Zwick, Brisa Palikuqi, Coralie Trentesaux, Joshua H. Wu, Oscar Pellon-Cardenas, Charles J. Zhang, Ian A. Glass, Claudia Loebel, Qianhui Yu, J. Gray Camp, Jonathan Z. Sexton, Ophir D. Klein, Michael P. Verzi, Jason R. Spence
View: Text | PDF

EPIREGULIN creates a developmental niche for spatially organized human intestinal enteroids

  • Text
  • PDF
Abstract

Epithelial organoids derived from intestinal tissue, called ‘enteroids’, recapitulate many aspects of the organ in vitro, and can be used for biological discovery, personalized medicine, and drug development. Here, we interrogated the cell signaling environment within the developing human intestine to identify niche cues that may be important for epithelial development and homeostasis. We identify an EGF family member, EPIREGULIN (EREG), which is robustly expressed in the developing human crypt. Enteroids generated from the developing human intestine grown in standard culture conditions, which contain EGF, are dominated by stem and progenitor cells, feature little differentiation and no spatial organization. Our results demonstrate that EREG can replace EGF in vitro, and EREG leads to spatially resolved enteroids that feature budded and proliferative crypt domains and a differentiated villus-like central lumen. Multiomic (transcriptome plus epigenome) profiling of native crypts, EGF-grown and EREG-grown enteroids show that EGF-enteroids have an altered chromatin landscape that is dependent on EGF concentration, downregulate the master intestinal transcription factor CDX2, and ectopically express stomach genes, a phenomenon that is reversible. This is in contrast to EREG-grown enteroids, which remain intestine-like in culture. Thus, EREG creates a homeostatic intestinal niche in vitro, enabling interrogation of stem cell function, cellular differentiation, and disease modeling.

Authors

Charlie J. Childs, Emily M. Holloway, Caden W. Sweet, Yu-Hwai Tsai, Angeline Wu, Abigail Vallie, Madeline K. Eiken, Meghan M. Capeling, Rachel K. Zwick, Brisa Palikuqi, Coralie Trentesaux, Joshua H. Wu, Oscar Pellon-Cardenas, Charles J. Zhang, Ian A. Glass, Claudia Loebel, Qianhui Yu, J. Gray Camp, Jonathan Z. Sexton, Ophir D. Klein, Michael P. Verzi, Jason R. Spence

×

Defective Jagged1 signaling impacts GnRH development and contributes to congenital hypogonadotropic hypogonadism
Ludovica Cotellessa, Federica Marelli, Paolo Duminuco, Michela Adamo, Georgios E. Papadakis, Lucia Bartoloni, Naoko Sato, Mariarosaria Lang-Muritano, Amineh Troendle, Waljit S. Dhillo, Annamaria Morelli, Giulia Guarnieri, Nelly Pitteloud, Luca Persani, Marco Bonomi, Paolo Giacobini, Valeria Vezzoli
Ludovica Cotellessa, Federica Marelli, Paolo Duminuco, Michela Adamo, Georgios E. Papadakis, Lucia Bartoloni, Naoko Sato, Mariarosaria Lang-Muritano, Amineh Troendle, Waljit S. Dhillo, Annamaria Morelli, Giulia Guarnieri, Nelly Pitteloud, Luca Persani, Marco Bonomi, Paolo Giacobini, Valeria Vezzoli
View: Text | PDF

Defective Jagged1 signaling impacts GnRH development and contributes to congenital hypogonadotropic hypogonadism

  • Text
  • PDF
Abstract

In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome (KS) are rare genetic disorders characterized by infertility and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling. Here, we documented the expression of Jagged 1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knock-down of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs. Next-generation sequencing was performed in 467 CHH unrelated probands leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibit reduced protein levels and altered subcellular localization. Altogether our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans.

Authors

Ludovica Cotellessa, Federica Marelli, Paolo Duminuco, Michela Adamo, Georgios E. Papadakis, Lucia Bartoloni, Naoko Sato, Mariarosaria Lang-Muritano, Amineh Troendle, Waljit S. Dhillo, Annamaria Morelli, Giulia Guarnieri, Nelly Pitteloud, Luca Persani, Marco Bonomi, Paolo Giacobini, Valeria Vezzoli

×

Embryonic alcohol exposure disrupts the ubiquitin-proteasome system
Olivia Weeks, Bess M. Miller, Brian J. Pepe-Mooney, Isaac M. Oderberg, Scott H. Freeburg, Colton J. Smith, Trista E. North, Wolfram Goessling
Olivia Weeks, Bess M. Miller, Brian J. Pepe-Mooney, Isaac M. Oderberg, Scott H. Freeburg, Colton J. Smith, Trista E. North, Wolfram Goessling
View: Text | PDF

Embryonic alcohol exposure disrupts the ubiquitin-proteasome system

  • Text
  • PDF
Abstract

Ethanol (EtOH) is a commonly encountered teratogen that can disrupt organ development and lead to fetal alcohol spectrum disorders (FASDs); many mechanisms of developmental toxicity are unknown. Here, we used transcriptomic analysis in an established zebrafish model of embryonic alcohol exposure (EAE) to identify the ubiquitin-proteasome system (UPS) as a critical target of EtOH during development. Surprisingly, EAE alters 20S, 19S, and 11S proteasome gene expression and increases ubiquitylated protein load. EtOH and its metabolite acetaldehyde decrease proteasomal peptidase activity in a cell type–specific manner. Proteasome 20S subunit β 1 (psmb1hi2939Tg) and proteasome 26S subunit, ATPase 6 (psmc6hi3593Tg), genetic KOs define the developmental impact of decreased proteasome function. Importantly, loss of psmb1 or psmc6 results in widespread developmental abnormalities resembling EAE phenotypes, including growth restriction, abnormal craniofacial structure, neurodevelopmental defects, and failed hepatopancreas maturation. Furthermore, pharmacologic inhibition of chymotrypsin-like proteasome activity potentiates the teratogenic effects of EAE on craniofacial structure, the nervous system, and the endoderm. Our studies identify the proteasome as a target of EtOH exposure and signify that UPS disruptions contribute to craniofacial, neurological, and endodermal phenotypes in FASDs.

Authors

Olivia Weeks, Bess M. Miller, Brian J. Pepe-Mooney, Isaac M. Oderberg, Scott H. Freeburg, Colton J. Smith, Trista E. North, Wolfram Goessling

×

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis
Sudhir Kumar, Xueping Fan, Hila Milo Rasouly, Richa Sharma, David J. Salant, Weining Lu
Sudhir Kumar, Xueping Fan, Hila Milo Rasouly, Richa Sharma, David J. Salant, Weining Lu
View: Text | PDF

ZEB2 controls kidney stromal progenitor differentiation and inhibits abnormal myofibroblast expansion and kidney fibrosis

  • Text
  • PDF
Abstract

FOXD1+ derived stromal cells give rise to pericytes and fibroblasts that support the kidney vasculature and interstitium but are also major precursors of myofibroblasts. ZEB2 is a SMAD-interacting transcription factor that is expressed in developing kidney stromal progenitors. Here we show that Zeb2 is essential for normal FOXD1+ stromal progenitor development. Specific deletion of mouse Zeb2 in FOXD1+ stromal progenitors (Zeb2 cKO) leads to abnormal interstitial stromal cell development, differentiation, and kidney fibrosis. Immunofluorescent staining analyses revealed abnormal expression of interstitial stromal cell markers MEIS1/2/3, CDKN1C, and CSPG4 (NG2) in newborn and 3-week-old Zeb2 cKO mouse kidneys. Zeb2 deficient FOXD1+ stromal progenitors also took on a myofibroblast fate that led to kidney fibrosis and kidney failure. Cell marker studies further confirmed that these myofibroblasts expressed pericyte and resident fibroblast markers including PDGFRβ, CSPG4, Desmin, GLI1, and NT5E. Notably, increased interstitial collagen deposition associated with loss of Zeb2 in FOXD1+ stromal progenitors was accompanied by increased expression of activated SMAD1/5/8, SMAD2/3, SMAD4, and AXIN2. Thus, our study identifies a key role of ZEB2 in maintaining the cell fate of FOXD1+ stromal progenitors during kidney development whereas loss of ZEB2 leads to differentiation of FOXD1+ stromal progenitors into myofibroblasts and kidney fibrosis.

Authors

Sudhir Kumar, Xueping Fan, Hila Milo Rasouly, Richa Sharma, David J. Salant, Weining Lu

×

HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein-2
Julien Sallais, Chanho Park, Sruthi Alahari, Tyler Porter, Ruizhe Liu, Merve Kurt, Abby Farrell, Martin Post, Isabella Caniggia
Julien Sallais, Chanho Park, Sruthi Alahari, Tyler Porter, Ruizhe Liu, Merve Kurt, Abby Farrell, Martin Post, Isabella Caniggia
View: Text | PDF

HIF1 inhibitor acriflavine rescues early-onset preeclampsia phenotype in mice lacking placental prolyl hydroxylase domain protein-2

  • Text
  • PDF
Abstract

Preeclampsia is a serious pregnancy disorder that lacks effective treatments other than delivery. Improper sensing of oxygen changes during placentation by prolyl hydroxylases (PHD), specifically PHD2, causes placental Hypoxia-Inducible Factor-1 (HIF1) buildup and abnormal downstream signaling in early-onset preeclampsia; yet therapeutic targeting of HIF1 has never been attempted. Here we generated a conditional (placenta-specific) knockout of Phd2 in mice (Phd2-/- cKO) to reproduce HIF1 excess and to assess anti-HIF therapy. Conditional deletion of Phd2 in the junctional zone (JZ) during pregnancy increased placental HIF1 content, resulting in abnormal placentation, impaired remodeling of the uterine spiral arteries, and fetal growth restriction. Pregnant dams developed new-onset hypertension at mid-gestation (E9.5) in addition to proteinuria and renal and cardiac pathology, hallmarks of severe preeclampsia in humans. Daily injection of acriflavine, a small-molecule inhibitor of HIF1, to pregnant Phd2-/- cKO mice from E7.5 (prior to hypertension) or E10.5 (after hypertension has been established) to E14.5 corrected placental dysmorphologies and improved fetal growth. Moreover, it reduced maternal blood pressure and reverted renal and myocardial pathology. Thus, therapeutic targeting of the HIF pathway may improve placental development and function, as well as maternal and fetal health, in preeclampsia.

Authors

Julien Sallais, Chanho Park, Sruthi Alahari, Tyler Porter, Ruizhe Liu, Merve Kurt, Abby Farrell, Martin Post, Isabella Caniggia

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 10
  • 11
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts