Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Cell biology

  • 463 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 44
  • 45
  • 46
  • 47
  • Next →
Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct
Julie G. Burel, Simon H. Apte, Penny L. Groves, James S. McCarthy, Denise L. Doolan
Julie G. Burel, Simon H. Apte, Penny L. Groves, James S. McCarthy, Denise L. Doolan
View: Text | PDF

Polyfunctional and IFN-γ monofunctional human CD4+ T cell populations are molecularly distinct

  • Text
  • PDF
Abstract

Pathogen-specific polyfunctional T cell responses have been associated with favorable clinical outcomes, but it is not known whether molecular differences exist between polyfunctional and monofunctional cytokine-producing T cells. Here, we report that polyfunctional CD4+ T cells induced during Plasmodium falciparum (P. falciparum) blood-stage infection in humans have a unique transcriptomic profile compared with IFN-γ monofunctional CD4+ T cells and, thus, are molecularly distinct. The 14-gene signature revealed in P. falciparum–reactive polyfunctional T cells is associated with cytokine signaling and lymphocyte chemotaxis, and systems biology analysis identified IL-27 as an upstream regulator of the polyfunctional gene signature. Importantly, the polyfunctional gene signature is largely conserved in Influenza-reactive polyfunctional CD4+ T cells, suggesting that polyfunctional T cells have core characteristics independent of pathogen specificity. This study provides the first evidence to our knowledge that consistent molecular differences exist between polyfunctional and monofunctional CD4+ T cells.

Authors

Julie G. Burel, Simon H. Apte, Penny L. Groves, James S. McCarthy, Denise L. Doolan

×

Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension
Pin-I Chen, Aiqin Cao, Kazuya Miyagawa, Nancy F. Tojais, Jan K. Hennigs, Caiyun G. Li, Nathaly M. Sweeney, Audrey S. Inglis, Lingli Wang, Dan Li, Matthew Ye, Brian J. Feldman, Marlene Rabinovitch
Pin-I Chen, Aiqin Cao, Kazuya Miyagawa, Nancy F. Tojais, Jan K. Hennigs, Caiyun G. Li, Nathaly M. Sweeney, Audrey S. Inglis, Lingli Wang, Dan Li, Matthew Ye, Brian J. Feldman, Marlene Rabinovitch
View: Text | PDF

Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension

  • Text
  • PDF
Abstract

Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress.

Authors

Pin-I Chen, Aiqin Cao, Kazuya Miyagawa, Nancy F. Tojais, Jan K. Hennigs, Caiyun G. Li, Nathaly M. Sweeney, Audrey S. Inglis, Lingli Wang, Dan Li, Matthew Ye, Brian J. Feldman, Marlene Rabinovitch

×

Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy
Hirotaka Kimura, Satoshi Eguchi, Junko Sasaki, Keiji Kuba, Hiroki Nakanishi, Shunsuke Takasuga, Masakazu Yamazaki, Akiteru Goto, Hiroyuki Watanabe, Hiroshi Itoh, Yumiko Imai, Akira Suzuki, Noboru Mizushima, Takehiko Sasaki
Hirotaka Kimura, Satoshi Eguchi, Junko Sasaki, Keiji Kuba, Hiroki Nakanishi, Shunsuke Takasuga, Masakazu Yamazaki, Akiteru Goto, Hiroyuki Watanabe, Hiroshi Itoh, Yumiko Imai, Akira Suzuki, Noboru Mizushima, Takehiko Sasaki
View: Text | PDF

Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy

  • Text
  • PDF
Abstract

Hypertrophic cardiomyopathy (HCM) is a common heart disease with a prevalence of 1 in 500 in the general population. Several mutations in genes encoding cardiac proteins have been found in HCM patients, but these changes do not predict occurrence or prognosis and the molecular mechanisms underlying HCM remain largely elusive. Here we show that cardiac expression of vacuolar protein sorting 34 (Vps34) is reduced in a subset of HCM patients. In a mouse model, muscle-specific loss of Vps34 led to HCM-like manifestations and sudden death. Vps34-deficient hearts exhibited abnormal histopathologies, including myofibrillar disarray and aggregates containing αB-crystallin (CryAB). These features result from a block in the ESCRT-mediated proteolysis that normally degrades K63-polyubiquitinated CryAB. CryAB deposition was also found in myocardial specimens from a subset of HCM patients whose hearts showed decreased Vps34. Our results identify disruption of the previously unknown Vps34-CryAB axis as a potentially novel etiology of HCM.

Authors

Hirotaka Kimura, Satoshi Eguchi, Junko Sasaki, Keiji Kuba, Hiroki Nakanishi, Shunsuke Takasuga, Masakazu Yamazaki, Akiteru Goto, Hiroyuki Watanabe, Hiroshi Itoh, Yumiko Imai, Akira Suzuki, Noboru Mizushima, Takehiko Sasaki

×

Inactivation of ABL kinases suppresses non–small cell lung cancer metastasis
Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast
Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast
View: Text | PDF

Inactivation of ABL kinases suppresses non–small cell lung cancer metastasis

  • Text
  • PDF
Abstract

Current therapies to treat non–small cell lung carcinoma (NSCLC) have proven ineffective owing to transient, variable, and incomplete responses. Here we show that ABL kinases, ABL1 and ABL2, promote metastasis of lung cancer cells harboring EGFR or KRAS mutations. Inactivation of ABL kinases suppresses NSCLC metastasis to brain and bone, and other organs. ABL kinases are required for expression of prometastasis genes. Notably, ABL1 and ABL2 depletion impairs extravasation of lung adenocarcinoma cells into the lung parenchyma. We found that ABL-mediated activation of the TAZ and β-catenin transcriptional coactivators is required for NSCLC metastasis. ABL kinases activate TAZ and β-catenin by decreasing their interaction with the β-TrCP ubiquitin ligase, leading to increased protein stability. High-level expression of ABL1, ABL2, and a subset of ABL-dependent TAZ- and β-catenin–target genes correlates with shortened survival of lung adenocarcinoma patients. Thus, ABL-specific allosteric inhibitors might be effective to treat metastatic lung cancer with an activated ABL pathway signature.

Authors

Jing Jin Gu, Clay Rouse, Xia Xu, Jun Wang, Mark W. Onaitis, Ann Marie Pendergast

×

Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis
Chenggang Li, Na Li, Xiaolei Liu, Erik Y. Zhang, Yang Sun, Kouhei Masuda, Jing Li, Julia Sun, Tasha Morrison, Xiangke Li, Yuanguang Chen, Jiang Wang, Nagla A. Karim, Yi Zhang, John Blenis, Mauricio J. Reginato, Elizabeth P. Henske, Jane J. Yu
Chenggang Li, Na Li, Xiaolei Liu, Erik Y. Zhang, Yang Sun, Kouhei Masuda, Jing Li, Julia Sun, Tasha Morrison, Xiangke Li, Yuanguang Chen, Jiang Wang, Nagla A. Karim, Yi Zhang, John Blenis, Mauricio J. Reginato, Elizabeth P. Henske, Jane J. Yu
View: Text | PDF

Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis

  • Text
  • PDF
Abstract

Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of anoikis. We report here that estrogen increased LAM patient–derived cells’ resistance to anoikis in vitro, accompanied by decreased accumulation of the proapoptotic protein Bim, an activator of anoikis. The resistance to anoikis was reversed by the proteasome inhibitor, bortezomib. Treatment of LAM patient–derived cells with estrogen plus bortezomib promoted anoikis compared with estrogen alone. Depletion of Bim by siRNA in TSC2-deficient cells resulted in anoikis resistance. Treatment of mice with bortezomib reduced estrogen-promoted lung colonization of TSC2-deficient cells. Importantly, molecular depletion of Bim by siRNA in Tsc2-deficient cells increased lung colonization in a mouse model. Collectively, these data indicate that Bim plays a key role in estrogen-enhanced survival of LAM patient–derived cells under detached conditions that occur with dissemination. Thus, targeting Bim may be a plausible future treatment strategy in patients with LAM.

Authors

Chenggang Li, Na Li, Xiaolei Liu, Erik Y. Zhang, Yang Sun, Kouhei Masuda, Jing Li, Julia Sun, Tasha Morrison, Xiangke Li, Yuanguang Chen, Jiang Wang, Nagla A. Karim, Yi Zhang, John Blenis, Mauricio J. Reginato, Elizabeth P. Henske, Jane J. Yu

×

ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice
Mahlet B. Abera, Jingbo Xiao, Jonathan Nofziger, Steve Titus, Noel Southall, Wei Zheng, Kasey E. Moritz, Marc Ferrer, Jonathan J. Cherry, Elliot J. Androphy, Amy Wang, Xin Xu, Christopher Austin, Kenneth H. Fischbeck, Juan J. Marugan, Barrington G. Burnett
Mahlet B. Abera, Jingbo Xiao, Jonathan Nofziger, Steve Titus, Noel Southall, Wei Zheng, Kasey E. Moritz, Marc Ferrer, Jonathan J. Cherry, Elliot J. Androphy, Amy Wang, Xin Xu, Christopher Austin, Kenneth H. Fischbeck, Juan J. Marugan, Barrington G. Burnett
View: Text | PDF

ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient–derived cells. We show here that ML372, a representative of this series, almost doubles the half-life of residual SMN protein expressed from the SMN2 locus by blocking its ubiquitination and subsequent degradation by the proteasome. ML372 increased SMN protein levels in muscle, spinal cord, and brain tissue of SMA mice. Importantly, ML372 treatment improved the righting reflex and extended survival of a severe mouse model of SMA. These results demonstrate that slowing SMN degradation by selectively inhibiting its ubiquitination can improve the motor phenotype and lifespan of SMA model mice.

Authors

Mahlet B. Abera, Jingbo Xiao, Jonathan Nofziger, Steve Titus, Noel Southall, Wei Zheng, Kasey E. Moritz, Marc Ferrer, Jonathan J. Cherry, Elliot J. Androphy, Amy Wang, Xin Xu, Christopher Austin, Kenneth H. Fischbeck, Juan J. Marugan, Barrington G. Burnett

×

Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury
Feifei Su, Valerie D. Myers, Tijana Knezevic, JuFang Wang, Erhe Gao, Muniswamy Madesh, Farzaneh G. Tahrir, Manish K. Gupta, Jennifer Gordon, Joseph Rabinowitz, Frederick V. Ramsey, Douglas G. Tilley, Kamel Khalili, Joseph Y. Cheung, Arthur M. Feldman
Feifei Su, Valerie D. Myers, Tijana Knezevic, JuFang Wang, Erhe Gao, Muniswamy Madesh, Farzaneh G. Tahrir, Manish K. Gupta, Jennifer Gordon, Joseph Rabinowitz, Frederick V. Ramsey, Douglas G. Tilley, Kamel Khalili, Joseph Y. Cheung, Arthur M. Feldman
View: Text | PDF

Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Bcl-2–associated athanogene 3 (BAG3) is an evolutionarily conserved protein expressed at high levels in the heart and the vasculature and in many cancers. While altered BAG3 expression has been associated with cardiac dysfunction, its role in ischemia/reperfusion (I/R) is unknown. To test the hypothesis that BAG3 protects the heart from reperfusion injury, in vivo cardiac function was measured in hearts infected with either recombinant adeno-associated virus serotype 9–expressing (rAAV9-expressing) BAG3 or GFP and subjected to I/R. To elucidate molecular mechanisms by which BAG3 protects against I/R injury, neonatal mouse ventricular cardiomyocytes (NMVCs) in which BAG3 levels were modified by adenovirus expressing (Ad-expressing) BAG3 or siBAG3 were exposed to hypoxia/reoxygenation (H/R). H/R significantly reduced NMVC BAG3 levels, which were associated with enhanced expression of apoptosis markers, decreased expression of autophagy markers, and reduced autophagy flux. The deleterious effects of H/R on apoptosis and autophagy were recapitulated by knockdown of BAG3 with Ad-siBAG3 and were rescued by Ad-BAG3. In vivo, treatment of mice with rAAV9-BAG3 prior to I/R significantly decreased infarct size and improved left ventricular function when compared with mice receiving rAAV9-GFP and improved markers of autophagy and apoptosis. These findings suggest that BAG3 may provide a therapeutic target in patients undergoing reperfusion after myocardial infarction.

Authors

Feifei Su, Valerie D. Myers, Tijana Knezevic, JuFang Wang, Erhe Gao, Muniswamy Madesh, Farzaneh G. Tahrir, Manish K. Gupta, Jennifer Gordon, Joseph Rabinowitz, Frederick V. Ramsey, Douglas G. Tilley, Kamel Khalili, Joseph Y. Cheung, Arthur M. Feldman

×

Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity
Amin Khalifeh-Soltani, Deepti Gupta, Arnold Ha, Jahangir Iqbal, Mahmood Hussain, Michael J. Podolsky, Kamran Atabai
Amin Khalifeh-Soltani, Deepti Gupta, Arnold Ha, Jahangir Iqbal, Mahmood Hussain, Michael J. Podolsky, Kamran Atabai
View: Text | PDF

Mfge8 regulates enterocyte lipid storage by promoting enterocyte triglyceride hydrolase activity

  • Text
  • PDF
Abstract

The small intestine has an underappreciated role as a lipid storage organ. Under conditions of high dietary fat intake, enterocytes can minimize the extent of postprandial lipemia by storing newly absorbed dietary fat in cytoplasmic lipid droplets. Lipid droplets can be subsequently mobilized for the production of chylomicrons. The mechanisms that regulate this process are poorly understood. We report here that the milk protein Mfge8 regulates hydrolysis of cytoplasmic lipid droplets in enterocytes after interacting with the αvβ3 and αvβ5 integrins. Mice deficient in Mfge8 or the αvβ3 and αvβ5 integrins accumulate excess cytoplasmic lipid droplets after a fat challenge. Mechanistically, interruption of the Mfge8-integrin axis leads to impaired enterocyte intracellular triglyceride hydrolase activity in vitro and in vivo. Furthermore, Mfge8 increases triglyceride hydrolase activity through a PI3 kinase/mTORC2–dependent signaling pathway. These data identify a key role for Mfge8 and the αvβ3 and αvβ5 integrins in regulating enterocyte lipid processing.

Authors

Amin Khalifeh-Soltani, Deepti Gupta, Arnold Ha, Jahangir Iqbal, Mahmood Hussain, Michael J. Podolsky, Kamran Atabai

×

Proproliferative and antiapoptotic action of exogenously introduced YAP in pancreatic β cells
Ting Yuan, Sahar Rafizadeh, Zahra Azizi, Blaz Lupse, Kanaka Durga Devi Gorrepati, Sushil Awal, Jose Oberholzer, Kathrin Maedler, Amin Ardestani
Ting Yuan, Sahar Rafizadeh, Zahra Azizi, Blaz Lupse, Kanaka Durga Devi Gorrepati, Sushil Awal, Jose Oberholzer, Kathrin Maedler, Amin Ardestani
View: Text | PDF

Proproliferative and antiapoptotic action of exogenously introduced YAP in pancreatic β cells

  • Text
  • PDF
Abstract

Loss of functional pancreatic β cells is a hallmark of both type 1 and 2 diabetes. Identifying the pathways that promote β cell proliferation and/or block β cell apoptosis is a potential strategy for diabetes therapy. The transcriptional coactivator Yes-associated protein (YAP), a major downstream effector of the Hippo signaling pathway, is a key regulator of organ size and tissue homeostasis by modulating cell proliferation and apoptosis. YAP is not expressed in mature primary human and mouse β cells. We aimed to identify whether reexpression of a constitutively active form of YAP promotes β cell proliferation/survival. Overexpression of YAP remarkably induced β cell proliferation in isolated human islets, while β cell function and functional identity genes were fully preserved. The transcription factor forkhead box M1 (FOXM1) was upregulated upon YAP overexpression and necessary for YAP-dependent β cell proliferation. YAP overexpression protected β cells from apoptosis triggered by multiple diabetic conditions. The small redox proteins thioredoxin-1 and thioredoxin-2 (Trx1/2) were upregulated by YAP; disruption of the Trx system revealed that Trx1/2 was required for the antiapoptotic action of YAP in insulin-producing β cells. Our data show the robust proproliferative and antiapoptotic function of YAP in pancreatic β cells. YAP reconstitution may represent a disease-modifying approach to restore a functional β cell mass in diabetes.

Authors

Ting Yuan, Sahar Rafizadeh, Zahra Azizi, Blaz Lupse, Kanaka Durga Devi Gorrepati, Sushil Awal, Jose Oberholzer, Kathrin Maedler, Amin Ardestani

×

Adipocyte-specific loss of PPARγ attenuates cardiac hypertrophy
Xi Fang, Matthew J. Stroud, Kunfu Ouyang, Li Fang, Jianlin Zhang, Nancy D. Dalton, Yusu Gu, Tongbin Wu, Kirk L. Peterson, Hsien-Da Huang, Ju Chen, Nanping Wang
Xi Fang, Matthew J. Stroud, Kunfu Ouyang, Li Fang, Jianlin Zhang, Nancy D. Dalton, Yusu Gu, Tongbin Wu, Kirk L. Peterson, Hsien-Da Huang, Ju Chen, Nanping Wang
View: Text | PDF

Adipocyte-specific loss of PPARγ attenuates cardiac hypertrophy

  • Text
  • PDF
Abstract

Adipose tissue is a key endocrine organ that governs systemic homeostasis. PPARγ is a master regulator of adipose tissue signaling that plays an essential role in insulin sensitivity, making it an important therapeutic target. The selective PPARγ agonist rosiglitazone (RSG) has been used to treat diabetes. However, adverse cardiovascular effects have seriously hindered its clinical application. Experimental models have revealed that PPARγ activation increases cardiac hypertrophy. RSG stimulates cardiac hypertrophy and oxidative stress in cardiomyocyte-specific PPARγ knockout mice, implying that RSG might stimulate cardiac hypertrophy independently of cardiomyocyte PPARγ. However, candidate cell types responsible for RSG-induced cardiomyocyte hypertrophy remain unexplored. Utilizing cocultures of adipocytes and cardiomyocytes, we found that stimulation of PPARγ signaling in adipocytes increased miR-200a expression and secretion. Delivery of miR-200a in adipocyte-derived exosomes to cardiomyocytes resulted in decreased TSC1 and subsequent mTOR activation, leading to cardiomyocyte hypertrophy. Treatment with an antagomir to miR-200a blunted this hypertrophic response in cardiomyocytes. In vivo, specific ablation of PPARγ in adipocytes was sufficient to blunt hypertrophy induced by RSG treatment. By delineating mechanisms by which RSG elicits cardiac hypertrophy, we have identified pathways that mediate the crosstalk between adipocytes and cardiomyocytes to regulate cardiac remodeling.

Authors

Xi Fang, Matthew J. Stroud, Kunfu Ouyang, Li Fang, Jianlin Zhang, Nancy D. Dalton, Yusu Gu, Tongbin Wu, Kirk L. Peterson, Hsien-Da Huang, Ju Chen, Nanping Wang

×
  • ← Previous
  • 1
  • 2
  • …
  • 44
  • 45
  • 46
  • 47
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts