Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

  • 328 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • 32
  • 33
  • Next →
Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis, and diastolic dysfunction
Toru Shimizu, … , John Blair, James K. Liao
Toru Shimizu, … , John Blair, James K. Liao
Published July 6, 2017
Citation Information: JCI Insight. 2017;2(13):e93187. https://doi.org/10.1172/jci.insight.93187.
View: Text | PDF

Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis, and diastolic dysfunction

  • Text
  • PDF
Abstract

Although left ventricular (LV) diastolic dysfunction is often associated with hypertension, little is known regarding its underlying pathophysiological mechanism. Here, we show that the actin cytoskeletal regulator, Rho-associated coiled-coil containing kinase-2 (ROCK2), is a critical mediator of LV diastolic dysfunction. In response to angiotensin II (Ang II), mutant mice with fibroblast-specific deletion of ROCK2 (ROCK2Postn–/–) developed less LV wall thickness and fibrosis, along with improved isovolumetric relaxation. This corresponded with decreased connective tissue growth factor (CTGF) and fibroblast growth factor–2 (FGF2) expression in the hearts of ROCK2Postn–/– mice. Indeed, knockdown of ROCK2 in cardiac fibroblasts leads to decreased expression of CTGF and secretion of FGF2, and cardiomyocytes incubated with conditioned media from ROCK2-knockdown cardiac fibroblasts exhibited less hypertrophic response. In contrast, mutant mice with elevated fibroblast ROCK activity exhibited enhanced Ang II–stimulated cardiac hypertrophy and fibrosis. Clinically, higher leukocyte ROCK2 activity was observed in patients with diastolic dysfunction compared with age- and sex-matched controls, and correlated with higher grades of diastolic dysfunction by echocardiography. These findings indicate that fibroblast ROCK2 is necessary to cause cardiac hypertrophy and fibrosis through the induction CTGF and FGF2, and they suggest that targeting ROCK2 may have therapeutic benefits in patients with LV diastolic dysfunction.

Authors

Toru Shimizu, Nikhil Narang, Phetcharat Chen, Brian Yu, Maura Knapp, Jyothi Janardanan, John Blair, James K. Liao

×

Dnmt3a-mediated inhibition of Wnt in cardiac progenitor cells improves differentiation and remote remodeling after infarction
Aurelia De Pauw, … , Denise Hilfiker-Kleiner, Jean-Luc Balligand
Aurelia De Pauw, … , Denise Hilfiker-Kleiner, Jean-Luc Balligand
Published June 15, 2017
Citation Information: JCI Insight. 2017;2(12):e91810. https://doi.org/10.1172/jci.insight.91810.
View: Text | PDF

Dnmt3a-mediated inhibition of Wnt in cardiac progenitor cells improves differentiation and remote remodeling after infarction

  • Text
  • PDF
Abstract

Adult cardiac progenitor cells (CPCs) display a low capacity to differentiate into cardiomyocytes in injured hearts, strongly limiting the regenerative capacity of the mammalian myocardium. To identify new mechanisms regulating CPC differentiation, we used primary and clonally expanded Sca-1+ CPCs from murine adult hearts in homotypic culture or coculture with cardiomyocytes. Expression kinetics analysis during homotypic culture differentiation showed downregulation of Wnt target genes concomitant with increased expression of the Wnt antagonist, Wnt inhibitory factor 1 (Wif1), which is necessary to stimulate CPC differentiation. We show that the expression of the Wif1 gene is repressed by DNA methylation and regulated by the de novo DNA methyltransferase Dnmt3a. In addition, miR-29a is upregulated early during CPC differentiation and downregulates Dnmt3a expression, thereby decreasing Wif1 gene methylation and increasing the efficiency of differentiation of Sca-1+ CPCs in vitro. Extending these findings in vivo, transient silencing of Dnmt3a in CPCs subsequently injected in the border zone of infarcted mouse hearts improved CPC differentiation in situ and remote cardiac remodeling. In conclusion, miR-29a and Dnmt3a epigenetically regulate CPC differentiation through Wnt inhibition. Remote effects on cardiac remodeling support paracrine signaling beyond the local injection site, with potential therapeutic interest for cardiac repair.

Authors

Aurelia De Pauw, Emilie Andre, Belaid Sekkali, Caroline Bouzin, Hrag Esfahani, Nicolas Barbier, Axelle Loriot, Charles De Smet, Laetitia Vanhoutte, Stéphane Moniotte, Bernhard Gerber, Vittoria di Mauro, Daniele Catalucci, Olivier Feron, Denise Hilfiker-Kleiner, Jean-Luc Balligand

×

Myeloid-related protein-14 regulates deep vein thrombosis
Yunmei Wang, … , Farouc A. Jaffer, Daniel I. Simon
Yunmei Wang, … , Farouc A. Jaffer, Daniel I. Simon
Published June 2, 2017
Citation Information: JCI Insight. 2017;2(11):e91356. https://doi.org/10.1172/jci.insight.91356.
View: Text | PDF

Myeloid-related protein-14 regulates deep vein thrombosis

  • Text
  • PDF
Abstract

Using transcriptional profiling of platelets from patients presenting with acute myocardial infarction, we identified myeloid-related protein-14 (MRP-14, also known as S100A9) as an acute myocardial infarction gene and reported that platelet MRP-14 binding to platelet CD36 regulates arterial thrombosis. However, whether MRP-14 plays a role in venous thrombosis is unknown. We subjected WT and Mrp-14–deficient (Mrp-14-/-) mice to experimental models of deep vein thrombosis (DVT) by stasis ligation or partial flow restriction (stenosis) of the inferior vena cava. Thrombus weight in response to stasis ligation or stenosis was reduced significantly in Mrp-14-/- mice compared with WT mice. The adoptive transfer of WT neutrophils or platelets, or the infusion of recombinant MRP-8/14, into Mrp-14-/- mice rescued the venous thrombosis defect in Mrp-14-/- mice, indicating that neutrophil- and platelet-derived MRP-14 directly regulate venous thrombogenesis. Stimulation of neutrophils with MRP-14 induced neutrophil extracellular trap (NET) formation, and NETs were reduced in venous thrombi harvested from Mrp-14-/- mice and in Mrp-14-/- neutrophils stimulated with ionomycin. Given prior evidence that MRP-14 also regulates arterial thrombosis, but not hemostasis (i.e., reduced bleeding risk), MRP-14 appears to be a particularly attractive molecular target for treating thrombotic cardiovascular diseases, including myocardial infarction, stroke, and venous thromboembolism.

Authors

Yunmei Wang, Huiyun Gao, Chase W. Kessinger, Alvin Schmaier, Farouc A. Jaffer, Daniel I. Simon

×

Insulin supplementation attenuates cancer-induced cardiomyopathy and slows tumor disease progression
James T. Thackeray, … , Frank M. Bengel, Denise Hilfiker-Kleiner
James T. Thackeray, … , Frank M. Bengel, Denise Hilfiker-Kleiner
Published May 18, 2017
Citation Information: JCI Insight. 2017;2(10):e93098. https://doi.org/10.1172/jci.insight.93098.
View: Text | PDF

Insulin supplementation attenuates cancer-induced cardiomyopathy and slows tumor disease progression

  • Text
  • PDF
Abstract

Advanced cancer induces fundamental changes in metabolism and promotes cardiac atrophy and heart failure. We discovered systemic insulin deficiency in cachectic cancer patients. Similarly, mice with advanced B16F10 melanoma (B16F10-TM) or colon 26 carcinoma (C26-TM) displayed decreased systemic insulin associated with marked cardiac atrophy, metabolic impairment, and function. B16F10 and C26 tumors decrease systemic insulin via high glucose consumption, lowering pancreatic insulin production and producing insulin-degrading enzyme. As tumor cells consume glucose in an insulin-independent manner, they shift glucose away from cardiomyocytes. Since cardiomyocytes in both tumor models remained insulin responsive, low-dose insulin supplementation by subcutaneous implantation of insulin-releasing pellets improved cardiac glucose uptake, atrophy, and function, with no adverse side effects. In addition, by redirecting glucose to the heart in addition to other organs, the systemic insulin treatment lowered glucose usage by the tumor and thereby decreased tumor growth and volume. Insulin corrected the cancer-induced reduction in cardiac Akt activation and the subsequent overactivation of the proteasome and autophagy. Thus, cancer-induced systemic insulin depletion contributes to cardiac wasting and failure and may promote tumor growth. Low-dose insulin supplementation attenuates these processes and may be supportive in cardio-oncologic treatment concepts.

Authors

James T. Thackeray, Stefan Pietzsch, Britta Stapel, Melanie Ricke-Hoch, Chun-Wei Lee, Jens P. Bankstahl, Michaela Scherr, Jörg Heineke, Gesine Scharf, Arash Haghikia, Frank M. Bengel, Denise Hilfiker-Kleiner

×

Atherogenesis and metabolic dysregulation in LDL receptor–knockout rats
Srinivas D. Sithu, … , Aruni Bhatnagar, Sanjay Srivastava
Srinivas D. Sithu, … , Aruni Bhatnagar, Sanjay Srivastava
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e86442. https://doi.org/10.1172/jci.insight.86442.
View: Text | PDF

Atherogenesis and metabolic dysregulation in LDL receptor–knockout rats

  • Text
  • PDF
Abstract

Mechanisms of atherogenesis have been studied extensively in genetically engineered mice with disturbed cholesterol metabolism such as those lacking either the LDL receptor (Ldlr) or apolipoprotein E (apoe). Few other animal models of atherosclerosis are available. WT rabbits or rats, even on high-fat or high-cholesterol diets, develop sparse atherosclerotic lesions. We examined the effects of Ldlr deletion on lipoprotein metabolism and atherosclerotic lesion formation in Sprague-Dawley rats. Deletion of Ldlr resulted in the loss of the LDLR protein and caused a significant increase in plasma total cholesterol and triglycerides. On normal chow, Ldlr-KO rats gained more weight and were more glucose intolerant than WT rats. Plasma proprotein convertase subtilisin kexin 9 (PCSK9) and leptin levels were higher and adiponectin levels were lower in KO than WT rats. On the Western diet, the KO rats displayed exaggerated obesity and age-dependent increases in glucose intolerance. No appreciable aortic lesions were observed in KO rats fed normal chow for 64 weeks or Western diet for 16 weeks; however, after 34–52 weeks of Western diet, the KO rats developed exuberant atherosclerotic lesions in the aortic arch and throughout the abdominal aorta. The Ldlr-KO rat may be a useful model for studying obesity, insulin resistance, and early-stage atherosclerosis.

Authors

Srinivas D. Sithu, Marina V. Malovichko, Krista A. Riggs, Nalinie S. Wickramasinghe, Millicent G. Winner, Abhinav Agarwal, Rihab E. Hamed-Berair, Anuradha Kalani, Daniel W. Riggs, Aruni Bhatnagar, Sanjay Srivastava

×

miR-21 is associated with fibrosis and right ventricular failure
Sushma Reddy, … , Giovanni Fajardo, Daniel Bernstein
Sushma Reddy, … , Giovanni Fajardo, Daniel Bernstein
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e91625. https://doi.org/10.1172/jci.insight.91625.
View: Text | PDF

miR-21 is associated with fibrosis and right ventricular failure

  • Text
  • PDF
Abstract

Combined pulmonary insufficiency (PI) and stenosis (PS) is a common long-term sequela after repair of many forms of congenital heart disease, causing progressive right ventricular (RV) dilation and failure. Little is known of the mechanisms underlying this combination of preload and afterload stressors. We developed a murine model of PI and PS (PI+PS) to identify clinically relevant pathways and biomarkers of disease progression. Diastolic dysfunction was induced (restrictive RV filling, elevated RV end-diastolic pressures) at 1 month after generation of PI+PS and progressed to systolic dysfunction (decreased RV shortening) by 3 months. RV fibrosis progressed from 1 month (4.4% ± 0.4%) to 3 months (9.2% ± 1%), along with TGF-β signaling and tissue expression of profibrotic miR-21. Although plasma miR-21 was upregulated with diastolic dysfunction, it was downregulated with the onset of systolic dysfunction), correlating with RV fibrosis. Plasma miR-21 in children with PI+PS followed a similar pattern. A model of combined RV volume and pressure overload recapitulates the evolution of RV failure unique to patients with prior RV outflow tract surgery. This progression was characterized by enhanced TGF-β and miR-21 signaling. miR-21 may serve as a plasma biomarker of RV failure, with decreased expression heralding the need for valve replacement.

Authors

Sushma Reddy, Dong-Qing Hu, Mingming Zhao, Eddie Blay Jr., Nefthi Sandeep, Sang-Ging Ong, Gwanghyun Jung, Kristina B. Kooiker, Michael Coronado, Giovanni Fajardo, Daniel Bernstein

×

Increased de novo ceramide synthesis and accumulation in failing myocardium
Ruiping Ji, … , Ira J. Goldberg, P. Christian Schulze
Ruiping Ji, … , Ira J. Goldberg, P. Christian Schulze
Published May 4, 2017
Citation Information: JCI Insight. 2017;2(9):e82922. https://doi.org/10.1172/jci.insight.82922.
View: Text | PDF | Addendum

Increased de novo ceramide synthesis and accumulation in failing myocardium

  • Text
  • PDF
Abstract

Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long–chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long–chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction.

Authors

Ruiping Ji, Hirokazu Akashi, Konstantinos Drosatos, Xianghai Liao, Hongfeng Jiang, Peter J. Kennel, Danielle L. Brunjes, Estibaliz Castillero, Xiaokan Zhang, Lily Y. Deng, Shunichi Homma, Isaac J. George, Hiroo Takayama, Yoshifumi Naka, Ira J. Goldberg, P. Christian Schulze

×

Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism
Wiebke Arlt, … , Felix Beuschlein, Martin Reincke
Wiebke Arlt, … , Felix Beuschlein, Martin Reincke
Published April 20, 2017
Citation Information: JCI Insight. 2017;2(8):e93136. https://doi.org/10.1172/jci.insight.93136.
View: Text | PDF

Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism

  • Text
  • PDF
Abstract

BACKGROUND. Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess.

METHODS. We performed mass spectrometry–based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis.

RESULTS. Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients.

CONCLUSION. Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism.

FUNDING. Medical Research Council UK, Wellcome Trust, European Commission.

Authors

Wiebke Arlt, Katharina Lang, Alice J. Sitch, Anna S. Dietz, Yara Rhayem, Irina Bancos, Annette Feuchtinger, Vasileios Chortis, Lorna C. Gilligan, Philippe Ludwig, Anna Riester, Evelyn Asbach, Beverly A. Hughes, Donna M. O’Neil, Martin Bidlingmaier, Jeremy W. Tomlinson, Zaki K. Hassan-Smith, D. Aled Rees, Christian Adolf, Stefanie Hahner, Marcus Quinkler, Tanja Dekkers, Jaap Deinum, Michael Biehl, Brian G. Keevil, Cedric H.L. Shackleton, Jonathan J. Deeks, Axel K. Walch, Felix Beuschlein, Martin Reincke

×

RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism
Yue Yi Wang, … , Jean-Pierre Benitah, Ana María Gómez
Yue Yi Wang, … , Jean-Pierre Benitah, Ana María Gómez
Published April 20, 2017
Citation Information: JCI Insight. 2017;2(8):e91872. https://doi.org/10.1172/jci.insight.91872.
View: Text | PDF

RyR2R420Q catecholaminergic polymorphic ventricular tachycardia mutation induces bradycardia by disturbing the coupled clock pacemaker mechanism

  • Text
  • PDF
Abstract

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal genetic arrhythmia that manifests syncope or sudden death in children and young adults under stress conditions. CPVT patients often present bradycardia and sino-atrial node (SAN) dysfunction. However, the mechanism remains unclear. We analyzed SAN function in two CPVT families and in a novel knock-in (KI) mouse model carrying the RyR2R420Q mutation. Humans and KI mice presented slower resting heart rate. Accordingly, the rate of spontaneous intracellular Ca2+ ([Ca2+]i) transients was slower in KI mouse SAN preparations than in WT, without any significant alteration in the “funny” current (If ). The L-type Ca2+ current was reduced in KI SAN cells in a [Ca2+]i-dependent way, suggesting that bradycardia was due to disrupted crosstalk between the “voltage” and “Ca2+” clock, and the mechanisms of pacemaking was induced by aberrant spontaneous RyR2- dependent Ca2+ release. This finding was consistent with a higher Ca2+ leak during diastolic periods produced by long-lasting Ca2+ sparks in KI SAN cells. Our results uncover a mechanism for the CPVT-causing RyR2 N-terminal mutation R420Q, and they highlight the fact that enhancing the Ca2+ clock may slow the heart rhythm by disturbing the coupling between Ca2+ and voltage clocks.

Authors

Yue Yi Wang, Pietro Mesirca, Elena Marqués-Sulé, Alexandra Zahradnikova Jr., Olivier Villejoubert, Pilar D’Ocon, Cristina Ruiz, Diana Domingo, Esther Zorio, Matteo E. Mangoni, Jean-Pierre Benitah, Ana María Gómez

×

Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling
Milena B. Furtado, … , Nadia A. Rosenthal, Mauro W. Costa
Milena B. Furtado, … , Nadia A. Rosenthal, Mauro W. Costa
Published March 23, 2017
Citation Information: JCI Insight. 2017;2(6):e88271. https://doi.org/10.1172/jci.insight.88271.
View: Text | PDF

Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling

  • Text
  • PDF
Abstract

Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease–generating mutation. Our model fully reproduces the morphological and physiological clinical presentations of the disease and reveals an understudied aspect of Nkx2-5–driven pathology, a primary right ventricular dysfunction. We further describe the molecular consequences of disrupting the transcriptional network regulated by Nkx2-5 in the heart and show that Nkx2-5–dependent perturbation of the Wnt signaling pathway promotes heart dysfunction through alteration of cardiomyocyte metabolism. Our data provide mechanistic insights on how Nkx2-5 regulates heart function and metabolism, a link in the study of congenital heart disease, and confirms that our models are the first murine genetic models to our knowledge to present all spectra of clinically relevant adult congenital heart disease phenotypes generated by NKX2-5 mutations in patients.

Authors

Milena B. Furtado, Julia C. Wilmanns, Anjana Chandran, Joelle Perera, Olivia Hon, Christine Biben, Taylor J. Willow, Hieu T. Nim, Gurpreet Kaur, Stephanie Simonds, Qizhu Wu, David Willians, Ekaterina Salimova, Nicolas Plachta, James M. Denegre, Stephen A. Murray, Diane Fatkin, Michael Cowley, James T. Pearson, David Kaye, Mirana Ramialison, Richard P. Harvey, Nadia A. Rosenthal, Mauro W. Costa

×
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • 32
  • 33
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts