Although left ventricular (LV) diastolic dysfunction is often associated with hypertension, little is known regarding its underlying pathophysiological mechanism. Here, we show that the actin cytoskeletal regulator, Rho-associated coiled-coil containing kinase-2 (ROCK2), is a critical mediator of LV diastolic dysfunction. In response to angiotensin II (Ang II), mutant mice with fibroblast-specific deletion of ROCK2 (ROCK2Postn–/–) developed less LV wall thickness and fibrosis, along with improved isovolumetric relaxation. This corresponded with decreased connective tissue growth factor (CTGF) and fibroblast growth factor–2 (FGF2) expression in the hearts of ROCK2Postn–/– mice. Indeed, knockdown of ROCK2 in cardiac fibroblasts leads to decreased expression of CTGF and secretion of FGF2, and cardiomyocytes incubated with conditioned media from ROCK2-knockdown cardiac fibroblasts exhibited less hypertrophic response. In contrast, mutant mice with elevated fibroblast ROCK activity exhibited enhanced Ang II–stimulated cardiac hypertrophy and fibrosis. Clinically, higher leukocyte ROCK2 activity was observed in patients with diastolic dysfunction compared with age- and sex-matched controls, and correlated with higher grades of diastolic dysfunction by echocardiography. These findings indicate that fibroblast ROCK2 is necessary to cause cardiac hypertrophy and fibrosis through the induction CTGF and FGF2, and they suggest that targeting ROCK2 may have therapeutic benefits in patients with LV diastolic dysfunction.
Toru Shimizu, Nikhil Narang, Phetcharat Chen, Brian Yu, Maura Knapp, Jyothi Janardanan, John Blair, James K. Liao
Adult cardiac progenitor cells (CPCs) display a low capacity to differentiate into cardiomyocytes in injured hearts, strongly limiting the regenerative capacity of the mammalian myocardium. To identify new mechanisms regulating CPC differentiation, we used primary and clonally expanded Sca-1+ CPCs from murine adult hearts in homotypic culture or coculture with cardiomyocytes. Expression kinetics analysis during homotypic culture differentiation showed downregulation of Wnt target genes concomitant with increased expression of the Wnt antagonist, Wnt inhibitory factor 1 (Wif1), which is necessary to stimulate CPC differentiation. We show that the expression of the Wif1 gene is repressed by DNA methylation and regulated by the de novo DNA methyltransferase Dnmt3a. In addition, miR-29a is upregulated early during CPC differentiation and downregulates Dnmt3a expression, thereby decreasing Wif1 gene methylation and increasing the efficiency of differentiation of Sca-1+ CPCs in vitro. Extending these findings in vivo, transient silencing of Dnmt3a in CPCs subsequently injected in the border zone of infarcted mouse hearts improved CPC differentiation in situ and remote cardiac remodeling. In conclusion, miR-29a and Dnmt3a epigenetically regulate CPC differentiation through Wnt inhibition. Remote effects on cardiac remodeling support paracrine signaling beyond the local injection site, with potential therapeutic interest for cardiac repair.
Aurelia De Pauw, Emilie Andre, Belaid Sekkali, Caroline Bouzin, Hrag Esfahani, Nicolas Barbier, Axelle Loriot, Charles De Smet, Laetitia Vanhoutte, Stéphane Moniotte, Bernhard Gerber, Vittoria di Mauro, Daniele Catalucci, Olivier Feron, Denise Hilfiker-Kleiner, Jean-Luc Balligand
Using transcriptional profiling of platelets from patients presenting with acute myocardial infarction, we identified myeloid-related protein-14 (MRP-14, also known as S100A9) as an acute myocardial infarction gene and reported that platelet MRP-14 binding to platelet CD36 regulates arterial thrombosis. However, whether MRP-14 plays a role in venous thrombosis is unknown. We subjected WT and Mrp-14–deficient (Mrp-14-/-) mice to experimental models of deep vein thrombosis (DVT) by stasis ligation or partial flow restriction (stenosis) of the inferior vena cava. Thrombus weight in response to stasis ligation or stenosis was reduced significantly in Mrp-14-/- mice compared with WT mice. The adoptive transfer of WT neutrophils or platelets, or the infusion of recombinant MRP-8/14, into Mrp-14-/- mice rescued the venous thrombosis defect in Mrp-14-/- mice, indicating that neutrophil- and platelet-derived MRP-14 directly regulate venous thrombogenesis. Stimulation of neutrophils with MRP-14 induced neutrophil extracellular trap (NET) formation, and NETs were reduced in venous thrombi harvested from Mrp-14-/- mice and in Mrp-14-/- neutrophils stimulated with ionomycin. Given prior evidence that MRP-14 also regulates arterial thrombosis, but not hemostasis (i.e., reduced bleeding risk), MRP-14 appears to be a particularly attractive molecular target for treating thrombotic cardiovascular diseases, including myocardial infarction, stroke, and venous thromboembolism.
Yunmei Wang, Huiyun Gao, Chase W. Kessinger, Alvin Schmaier, Farouc A. Jaffer, Daniel I. Simon
Advanced cancer induces fundamental changes in metabolism and promotes cardiac atrophy and heart failure. We discovered systemic insulin deficiency in cachectic cancer patients. Similarly, mice with advanced B16F10 melanoma (B16F10-TM) or colon 26 carcinoma (C26-TM) displayed decreased systemic insulin associated with marked cardiac atrophy, metabolic impairment, and function. B16F10 and C26 tumors decrease systemic insulin via high glucose consumption, lowering pancreatic insulin production and producing insulin-degrading enzyme. As tumor cells consume glucose in an insulin-independent manner, they shift glucose away from cardiomyocytes. Since cardiomyocytes in both tumor models remained insulin responsive, low-dose insulin supplementation by subcutaneous implantation of insulin-releasing pellets improved cardiac glucose uptake, atrophy, and function, with no adverse side effects. In addition, by redirecting glucose to the heart in addition to other organs, the systemic insulin treatment lowered glucose usage by the tumor and thereby decreased tumor growth and volume. Insulin corrected the cancer-induced reduction in cardiac Akt activation and the subsequent overactivation of the proteasome and autophagy. Thus, cancer-induced systemic insulin depletion contributes to cardiac wasting and failure and may promote tumor growth. Low-dose insulin supplementation attenuates these processes and may be supportive in cardio-oncologic treatment concepts.
James T. Thackeray, Stefan Pietzsch, Britta Stapel, Melanie Ricke-Hoch, Chun-Wei Lee, Jens P. Bankstahl, Michaela Scherr, Jörg Heineke, Gesine Scharf, Arash Haghikia, Frank M. Bengel, Denise Hilfiker-Kleiner
Mechanisms of atherogenesis have been studied extensively in genetically engineered mice with disturbed cholesterol metabolism such as those lacking either the LDL receptor (
Srinivas D. Sithu, Marina V. Malovichko, Krista A. Riggs, Nalinie S. Wickramasinghe, Millicent G. Winner, Abhinav Agarwal, Rihab E. Hamed-Berair, Anuradha Kalani, Daniel W. Riggs, Aruni Bhatnagar, Sanjay Srivastava
Combined pulmonary insufficiency (PI) and stenosis (PS) is a common long-term sequela after repair of many forms of congenital heart disease, causing progressive right ventricular (RV) dilation and failure. Little is known of the mechanisms underlying this combination of preload and afterload stressors. We developed a murine model of PI and PS (PI+PS) to identify clinically relevant pathways and biomarkers of disease progression. Diastolic dysfunction was induced (restrictive RV filling, elevated RV end-diastolic pressures) at 1 month after generation of PI+PS and progressed to systolic dysfunction (decreased RV shortening) by 3 months. RV fibrosis progressed from 1 month (4.4% ± 0.4%) to 3 months (9.2% ± 1%), along with TGF-β signaling and tissue expression of profibrotic miR-21. Although plasma miR-21 was upregulated with diastolic dysfunction, it was downregulated with the onset of systolic dysfunction), correlating with RV fibrosis. Plasma miR-21 in children with PI+PS followed a similar pattern. A model of combined RV volume and pressure overload recapitulates the evolution of RV failure unique to patients with prior RV outflow tract surgery. This progression was characterized by enhanced TGF-β and miR-21 signaling. miR-21 may serve as a plasma biomarker of RV failure, with decreased expression heralding the need for valve replacement.
Sushma Reddy, Dong-Qing Hu, Mingming Zhao, Eddie Blay Jr., Nefthi Sandeep, Sang-Ging Ong, Gwanghyun Jung, Kristina B. Kooiker, Michael Coronado, Giovanni Fajardo, Daniel Bernstein
Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long–chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long–chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the
Ruiping Ji, Hirokazu Akashi, Konstantinos Drosatos, Xianghai Liao, Hongfeng Jiang, Peter J. Kennel, Danielle L. Brunjes, Estibaliz Castillero, Xiaokan Zhang, Lily Y. Deng, Shunichi Homma, Isaac J. George, Hiroo Takayama, Yoshifumi Naka, Ira J. Goldberg, P. Christian Schulze
Wiebke Arlt, Katharina Lang, Alice J. Sitch, Anna S. Dietz, Yara Rhayem, Irina Bancos, Annette Feuchtinger, Vasileios Chortis, Lorna C. Gilligan, Philippe Ludwig, Anna Riester, Evelyn Asbach, Beverly A. Hughes, Donna M. O’Neil, Martin Bidlingmaier, Jeremy W. Tomlinson, Zaki K. Hassan-Smith, D. Aled Rees, Christian Adolf, Stefanie Hahner, Marcus Quinkler, Tanja Dekkers, Jaap Deinum, Michael Biehl, Brian G. Keevil, Cedric H.L. Shackleton, Jonathan J. Deeks, Axel K. Walch, Felix Beuschlein, Martin Reincke
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal genetic arrhythmia that manifests syncope or sudden death in children and young adults under stress conditions. CPVT patients often present bradycardia and sino-atrial node (SAN) dysfunction. However, the mechanism remains unclear. We analyzed SAN function in two CPVT families and in a novel knock-in (KI) mouse model carrying the RyR2R420Q mutation. Humans and KI mice presented slower resting heart rate. Accordingly, the rate of spontaneous intracellular Ca2+ ([Ca2+]i) transients was slower in KI mouse SAN preparations than in WT, without any significant alteration in the “funny” current (
Yue Yi Wang, Pietro Mesirca, Elena Marqués-Sulé, Alexandra Zahradnikova Jr., Olivier Villejoubert, Pilar D’Ocon, Cristina Ruiz, Diana Domingo, Esther Zorio, Matteo E. Mangoni, Jean-Pierre Benitah, Ana María Gómez
Mutations in the
Milena B. Furtado, Julia C. Wilmanns, Anjana Chandran, Joelle Perera, Olivia Hon, Christine Biben, Taylor J. Willow, Hieu T. Nim, Gurpreet Kaur, Stephanie Simonds, Qizhu Wu, David Willians, Ekaterina Salimova, Nicolas Plachta, James M. Denegre, Stephen A. Murray, Diane Fatkin, Michael Cowley, James T. Pearson, David Kaye, Mirana Ramialison, Richard P. Harvey, Nadia A. Rosenthal, Mauro W. Costa
No posts were found with this tag.