Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Issue highlight: September 7, 2017

Hepatic organoids for liver diseases

Published September 7, 2017, by JCI Insight staff

Issue highlight

Related articles

Human hepatic organoids for the analysis of human genetic diseases
Yuan Guan, Dan Xu, Phillip M. Garfin, Ursula Ehmer, Melissa Hurwitz, Greg Enns, Sara Michie, Manhong Wu, Ming Zheng, Toshihiko Nishimura, Julien Sage, Gary Peltz
Yuan Guan, Dan Xu, Phillip M. Garfin, Ursula Ehmer, Melissa Hurwitz, Greg Enns, Sara Michie, Manhong Wu, Ming Zheng, Toshihiko Nishimura, Julien Sage, Gary Peltz
View: Text | PDF | Corrigendum
Resource and Technical Advance Genetics Hepatology

Human hepatic organoids for the analysis of human genetic diseases

  • Text
  • PDF
Abstract

We developed an in vitro model system where induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional human hepatic organoids (HOs) through stages that resemble human liver during its embryonic development. The HOs consist of hepatocytes, and cholangiocytes, which are organized into epithelia that surround the lumina of bile duct–like structures. The organoids provide a potentially new model for liver regenerative processes, and were used to characterize the effect of different JAG1 mutations that cause: (a) Alagille syndrome (ALGS), a genetic disorder where NOTCH signaling pathway mutations impair bile duct formation, which has substantial variability in its associated clinical features; and (b) Tetralogy of Fallot (TOF), which is the most common form of a complex congenital heart disease, and is associated with several different heritable disorders. Our results demonstrate how an iPSC-based organoid system can be used with genome editing technologies to characterize the pathogenetic effect of human genetic disease-causing mutations.

Authors

Yuan Guan, Dan Xu, Phillip M. Garfin, Ursula Ehmer, Melissa Hurwitz, Greg Enns, Sara Michie, Manhong Wu, Ming Zheng, Toshihiko Nishimura, Julien Sage, Gary Peltz

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts