Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Issue highlight: April 9, 2020

The NET effect on macrophages in atherosclerosis

Published April 9, 2020, by Ken

Issue highlight

Related articles

Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice
Tatjana Josefs, Tessa J. Barrett, Emily J. Brown, Alexandra Quezada, Xiaoyun Wu, Maud Voisin, Jaume Amengual, Edward A. Fisher
Tatjana Josefs, Tessa J. Barrett, Emily J. Brown, Alexandra Quezada, Xiaoyun Wu, Maud Voisin, Jaume Amengual, Edward A. Fisher
View: Text | PDF
Research Article Cardiology Inflammation

Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice

  • Text
  • PDF
Abstract

Neutrophil extracellular traps (NETs) promote inflammation and atherosclerosis progression. NETs are increased in diabetes and impair the resolution of inflammation during wound healing. Atherosclerosis resolution, a process resembling wound healing, is also impaired in diabetes. Thus, we hypothesized that NETs impede atherosclerosis resolution in diabetes by increasing plaque inflammation. Indeed, transcriptomic profiling of plaque macrophages from NET+ and NET– areas in low-density lipoprotein receptor–deficient (Ldlr–/–) mice revealed inflammasome and glycolysis pathway upregulation, indicating a heightened inflammatory phenotype. We found that NETs declined during atherosclerosis resolution, which was induced by reducing hyperlipidemia in nondiabetic mice, but they persisted in diabetes, exacerbating macrophage inflammation and impairing resolution. In diabetic mice, deoxyribonuclease 1 treatment reduced plaque NET content and macrophage inflammation, promoting atherosclerosis resolution after lipid lowering. Given that humans with diabetes also exhibit impaired atherosclerosis resolution with lipid lowering, these data suggest that NETs contribute to the increased cardiovascular disease risk in this population and are a potential therapeutic target.

Authors

Tatjana Josefs, Tessa J. Barrett, Emily J. Brown, Alexandra Quezada, Xiaoyun Wu, Maud Voisin, Jaume Amengual, Edward A. Fisher

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts