Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Nrf2 prevents Notch-induced insulin resistance and tumorigenesis in mice
Dionysios V. Chartoumpekis, Yoko Yagishita, Marco Fazzari, Dushani L. Palliyaguru, Uma N.M. Rao, Apostolos Zaravinos, Nicholas K.H. Khoo, Francisco J. Schopfer, Kurt R. Weiss, George K. Michalopoulos, Ian Sipula, Robert M. O’Doherty, Thomas W. Kensler, Nobunao Wakabayashi
Dionysios V. Chartoumpekis, Yoko Yagishita, Marco Fazzari, Dushani L. Palliyaguru, Uma N.M. Rao, Apostolos Zaravinos, Nicholas K.H. Khoo, Francisco J. Schopfer, Kurt R. Weiss, George K. Michalopoulos, Ian Sipula, Robert M. O’Doherty, Thomas W. Kensler, Nobunao Wakabayashi
View: Text | PDF
Research Article Metabolism Oncology

Nrf2 prevents Notch-induced insulin resistance and tumorigenesis in mice

  • Text
  • PDF
Abstract

Insulin resistance is associated with increased incidence and enhanced progression of cancers. However, little is known about strategies that can effectively ameliorate insulin resistance and consequently halt cancer progression. Herein, we propose that the transcription factor Nrf2 (also known as Nfe2l2) may be such a target, given its central role in disease prevention. To this end, we developed a mouse that overexpresses the Notch intracellular domain in adipocytes (AdNICD), leading to lipodystrophy-induced severe insulin resistance and subsequent development of sarcomas, as a model reflecting that Notch signaling is deregulated in cancers and shows positive associations with insulin resistance and fatty liver disease in humans. Nrf2 pathway activation was achieved by knocking down Keap1, a repressor of Nrf2, in the AdNICD background. Constitutively enhanced Nrf2 signaling in this setting led to prevention of hepatic steatosis, dyslipidemia, and insulin resistance by repressing hepatic lipogenic pathways and restoration of the hepatic fatty acid profile to control levels. This protective effect of Nrf2 against diabetes extended to significant reduction and delay in sarcoma incidence and latency. Our study highlights that the Nrf2 pathway, which has been induced by small molecules in clinical trials, is a potential therapeutic target against insulin resistance and subsequent risk of cancer.

Authors

Dionysios V. Chartoumpekis, Yoko Yagishita, Marco Fazzari, Dushani L. Palliyaguru, Uma N.M. Rao, Apostolos Zaravinos, Nicholas K.H. Khoo, Francisco J. Schopfer, Kurt R. Weiss, George K. Michalopoulos, Ian Sipula, Robert M. O’Doherty, Thomas W. Kensler, Nobunao Wakabayashi

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts