Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation
Ayşe Kılıç, … , Amitabh Sharma, Harald Renz
Ayşe Kılıç, … , Amitabh Sharma, Harald Renz
Published June 7, 2018
Citation Information: JCI Insight. 2018;3(11):e97503. https://doi.org/10.1172/jci.insight.97503.
View: Text | PDF
Research Article Immunology Inflammation

A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation

  • Text
  • PDF
Abstract

Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including microRNAs (miRs), are pivotal in maintaining immune homeostasis. Since an altered expression of various miRs has been associated with T cell–driven diseases, including asthma, we hypothesized that miRs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and miR expression. Instead of focusing on the magnitude of miR differential expression, here we addressed the secondary consequences for the set of molecular interactions in the cell, the interactome. We developed the Impact of Differential Expression Across Layers, a network-based algorithm to prioritize disease-relevant miRs based on the central role of their targets in the molecular interactome. This method identified 5 Th2-related miRs (mir27b, mir206, mir106b, mir203, and mir23b) whose antagonization led to a sharp reduction of the Th2 phenotype. Overall, a systems biology tool was developed and validated, highlighting the role of miRs in Th2-driven immune response. This result offers potentially novel approaches for therapeutic interventions.

Authors

Ayşe Kılıç, Marc Santolini, Taiji Nakano, Matthias Schiller, Mizue Teranishi, Pascal Gellert, Yuliya Ponomareva, Thomas Braun, Shizuka Uchida, Scott T. Weiss, Amitabh Sharma, Harald Renz

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts