Neutrophils contribute to demyelinating autoimmune diseases, yet their phenotype and functions have been elusive to date. Here, we demonstrate that ICAM1 surface expression distinguishes extra- from intravascular neutrophils in the mouse CNS during experimental autoimmune encephalomyelitis (EAE). Transcriptomic analysis of these 2 subpopulations indicated that neutrophils, once extravasated, acquire macrophage-like properties, including the potential for immunostimulation and MHC class II–mediated antigen presentation. In corroboration, super-resolution (3D stimulated emission-depletion [STED]) microscopy revealed neutrophils forming synapses with T and B cells in situ. Further, neutrophils specifically express the aspartic retroviral-like protease ASPRV1, which increases in the CNS during EAE and severe cases of multiple sclerosis. Without ASPRV1, mice immunized with a new B cell–dependent myelin antigen (but not with the traditional myelin oligodendrocyte glycoprotein peptide) develop a chronic phase of EAE that is less severe and even completely fades in many individuals. Therefore, ICAM1+ macrophage–like neutrophils can play both shared and nonredundant roles in autoimmune demyelination, among them perpetuating inflammation via ASPRV1.
Ryder F. Whittaker Hawkins, Alexandre Patenaude, Aline Dumas, Rajiv Jain, Yodit Tesfagiorgis, Steven Kerfoot, Takeshi Matsui, Matthias Gunzer, Patrice E. Poubelle, Catherine Larochelle, Martin Pelletier, Luc Vallières
The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.