Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions
Ruth O. Payne, … , Alison M. Lawrie, Simon J. Draper
Ruth O. Payne, … , Alison M. Lawrie, Simon J. Draper
Published November 2, 2017
Citation Information: JCI Insight. 2017;2(21):e96381. https://doi.org/10.1172/jci.insight.96381.
View: Text | PDF
Research Article Infectious disease Vaccines

Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions

  • Text
  • PDF
Abstract

The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen — a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.

Authors

Ruth O. Payne, Sarah E. Silk, Sean C. Elias, Kazutoyo Miura, Ababacar Diouf, Francis Galaway, Hans de Graaf, Nathan J. Brendish, Ian D. Poulton, Oliver J. Griffiths, Nick J. Edwards, Jing Jin, Geneviève M. Labbé, Daniel G.W. Alanine, Loredana Siani, Stefania Di Marco, Rachel Roberts, Nicky Green, Eleanor Berrie, Andrew S. Ishizuka, Carolyn M. Nielsen, Martino Bardelli, Frederica D. Partey, Michael F. Ofori, Lea Barfod, Juliana Wambua, Linda M. Murungi, Faith H. Osier, Sumi Biswas, James S. McCarthy, Angela M. Minassian, Rebecca Ashfield, Nicola K. Viebig, Fay L. Nugent, Alexander D. Douglas, Johan Vekemans, Gavin J. Wright, Saul N. Faust, Adrian V.S. Hill, Carole A. Long, Alison M. Lawrie, Simon J. Draper

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts