Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms
Mary C. Drinane, Usman Yaqoob, Haibin Yu, Fanghong Luo, Thomas Greuter, Juan P. Arab, Enis Kostallari, Vikas K. Verma, Jessica Maiers, Thiago Milech De Assuncao, Michael Simons, Debabrata Mukhopadhyay, Tatiana Kisseleva, David A. Brenner, Raul Urrutia, Gwen Lomberk, Yandong Gao, Giovanni Ligresti, Daniel J. Tschumperlin, Alexander Revzin, Sheng Cao, Vijay H. Shah
Mary C. Drinane, Usman Yaqoob, Haibin Yu, Fanghong Luo, Thomas Greuter, Juan P. Arab, Enis Kostallari, Vikas K. Verma, Jessica Maiers, Thiago Milech De Assuncao, Michael Simons, Debabrata Mukhopadhyay, Tatiana Kisseleva, David A. Brenner, Raul Urrutia, Gwen Lomberk, Yandong Gao, Giovanni Ligresti, Daniel J. Tschumperlin, Alexander Revzin, Sheng Cao, Vijay H. Shah
View: Text | PDF
Research Article Hepatology

Synectin promotes fibrogenesis by regulating PDGFR isoforms through distinct mechanisms

  • Text
  • PDF
Abstract

The scaffold protein synectin plays a critical role in the trafficking and regulation of membrane receptor pathways. As platelet-derived growth factor receptor (PDGFR) is essential for hepatic stellate cell (HSC) activation and liver fibrosis, we sought to determine the role of synectin on the PDGFR pathway and development of liver fibrosis. Mice with deletion of synectin from HSC were found to be protected from liver fibrosis. mRNA sequencing revealed that knockdown of synectin in HSC demonstrated reductions in the fibrosis pathway of genes, including PDGFR-β. Chromatin IP assay of the PDGFR-β promoter upon synectin knockdown revealed a pattern of histone marks associated with decreased transcription, dependent on p300 histone acetyltransferase. Synectin knockdown was found to downregulate PDGFR-α protein levels, as well, but through an alternative mechanism: protection from autophagic degradation. Site-directed mutagenesis revealed that ubiquitination of specific PDGFR-α lysine residues was responsible for its autophagic degradation. Furthermore, functional studies showed decreased PDGF-dependent migration and proliferation of HSC after synectin knockdown. Finally, human cirrhotic livers demonstrated increased synectin protein levels. This work provides insight into differential transcriptional and posttranslational mechanisms of synectin regulation of PDGFRs, which are critical to fibrogenesis.

Authors

Mary C. Drinane, Usman Yaqoob, Haibin Yu, Fanghong Luo, Thomas Greuter, Juan P. Arab, Enis Kostallari, Vikas K. Verma, Jessica Maiers, Thiago Milech De Assuncao, Michael Simons, Debabrata Mukhopadhyay, Tatiana Kisseleva, David A. Brenner, Raul Urrutia, Gwen Lomberk, Yandong Gao, Giovanni Ligresti, Daniel J. Tschumperlin, Alexander Revzin, Sheng Cao, Vijay H. Shah

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts