Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis
Lynne A. Murray, David M. Habiel, Miriam Hohmann, Ana Camelo, Huilan Shang, Yang Zhou, Ana Lucia Coelho, Xueyan Peng, Mridu Gulati, Bruno Crestani, Matthew A. Sleeman, Tomas Mustelin, Meagan W. Moore, Changwan Ryu, Awo D. Osafo-Addo, Jack A. Elias, Chun G. Lee, Buqu Hu, Jose D. Herazo-Maya, Darryl A. Knight, Cory M. Hogaboam, Erica L. Herzog
Lynne A. Murray, David M. Habiel, Miriam Hohmann, Ana Camelo, Huilan Shang, Yang Zhou, Ana Lucia Coelho, Xueyan Peng, Mridu Gulati, Bruno Crestani, Matthew A. Sleeman, Tomas Mustelin, Meagan W. Moore, Changwan Ryu, Awo D. Osafo-Addo, Jack A. Elias, Chun G. Lee, Buqu Hu, Jose D. Herazo-Maya, Darryl A. Knight, Cory M. Hogaboam, Erica L. Herzog
View: Text | PDF
Research Article Inflammation Pulmonology

Antifibrotic role of vascular endothelial growth factor in pulmonary fibrosis

  • Text
  • PDF
Abstract

The chronic progressive decline in lung function observed in idiopathic pulmonary fibrosis (IPF) appears to result from persistent nonresolving injury to the epithelium, impaired restitution of the epithelial barrier in the lung, and enhanced fibroblast activation. Thus, understanding these key mechanisms and pathways modulating both is essential to greater understanding of IPF pathogenesis. We examined the association of VEGF with the IPF disease state and preclinical models in vivo and in vitro. Tissue and circulating levels of VEGF were significantly reduced in patients with IPF, particularly in those with a rapidly progressive phenotype, compared with healthy controls. Lung-specific overexpression of VEGF significantly protected mice following intratracheal bleomycin challenge, with a decrease in fibrosis and bleomycin-induced cell death observed in the VEGF transgenic mice. In vitro, apoptotic endothelial cell–derived mediators enhanced epithelial cell injury and reduced epithelial wound closure. This process was rescued by VEGF pretreatment of the endothelial cells via a mechanism involving thrombospondin-1 (TSP1). Taken together, these data indicate beneficial roles for VEGF during lung fibrosis via modulating epithelial homeostasis through a previously unrecognized mechanism involving the endothelium.

Authors

Lynne A. Murray, David M. Habiel, Miriam Hohmann, Ana Camelo, Huilan Shang, Yang Zhou, Ana Lucia Coelho, Xueyan Peng, Mridu Gulati, Bruno Crestani, Matthew A. Sleeman, Tomas Mustelin, Meagan W. Moore, Changwan Ryu, Awo D. Osafo-Addo, Jack A. Elias, Chun G. Lee, Buqu Hu, Jose D. Herazo-Maya, Darryl A. Knight, Cory M. Hogaboam, Erica L. Herzog

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts