Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Mutation of CRYAB encoding a conserved mitochondrial chaperone and antiapoptotic protein causes hereditary optic atrophy
Chenghui Wang, … , Yanchun Ji, Min-Xin Guan
Chenghui Wang, … , Yanchun Ji, Min-Xin Guan
Published November 19, 2024
Citation Information: JCI Insight. 2025;10(1):e182209. https://doi.org/10.1172/jci.insight.182209.
View: Text | PDF
Research Article Genetics Ophthalmology

Mutation of CRYAB encoding a conserved mitochondrial chaperone and antiapoptotic protein causes hereditary optic atrophy

  • Text
  • PDF
Abstract

The degeneration of retinal ganglion cells (RGC) due to mitochondrial dysfunctions manifests optic neuropathy. However, the molecular components of RGC linked to optic neuropathy manifestations remain largely unknown. Here, we identified a potentially novel optic atrophy-causative CRYAB gene encoding a highly conserved major lens protein acting as mitochondrial chaperone and possessing antiapoptotic activities. The heterozygous CRYAB mutation (c.313G>A, p. Glu105Lys) was cosegregated with autosomal dominant inheritance of optic atrophy in 3 Chinese families. The p.E105K mutation altered the structure and function of CRYAB, including decreased stability, reduced formation of oligomers, and decreased chaperone activity. Coimmunoprecipitation indicated that the p.E105K mutation reduced the interaction of CRYAB with apoptosis-associated cytochrome c and voltage-dependent anion channel protein. The cell lines carrying the p.E105K mutation displayed promotion of apoptosis and defective assembly, stability, and activities of oxidative phosphorylation system as well as imbalance of mitochondrial dynamics. Involvement of CRYAB in optic atrophy was confirmed by phenotypic evaluations of Cryabp.E105K-knockin mice. These mutant mice exhibited ocular lesions that included alteration of intraretinal layers, degeneration of RGCs, photoreceptor deficits, and abnormal retinal vasculature. Furthermore, Cryab-deficient mice displayed elevated apoptosis and mitochondrial dysfunctions. Our findings provide insight of pathophysiology of optic atrophy arising from RGC degeneration caused by CRYAB deficiency–induced elevated apoptosis and mitochondrial dysfunctions.

Authors

Chenghui Wang, Liyao Zhang, Zhipeng Nie, Min Liang, Hanqing Liu, Qiuzi Yi, Chunyan Wang, Cheng Ai, Juanjuan Zhang, Yinglong Gao, Yanchun Ji, Min-Xin Guan

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts