Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Targeted Bmal1 restoration in muscle prolongs lifespan with systemic health effects in aging model
Miguel A. Gutierrez-Monreal, Christopher A. Wolff, Eduardo E. Rijos, Mark R. Viggars, Collin M. Douglas, Vishwajeeth Pagala, Junmin Peng, Liam C. Hunt, Haocheng Ding, Zhiguang Huo, Fabio Demontis, Karyn A. Esser
Miguel A. Gutierrez-Monreal, Christopher A. Wolff, Eduardo E. Rijos, Mark R. Viggars, Collin M. Douglas, Vishwajeeth Pagala, Junmin Peng, Liam C. Hunt, Haocheng Ding, Zhiguang Huo, Fabio Demontis, Karyn A. Esser
View: Text | PDF
Research Article Muscle biology

Targeted Bmal1 restoration in muscle prolongs lifespan with systemic health effects in aging model

  • Text
  • PDF
Abstract

Disruption of the circadian clock in skeletal muscle worsens local and systemic health, leading to decreased muscle strength, metabolic dysfunction, and aging-like phenotypes. Whole-body knockout mice that lack Bmal1, a key component of the molecular clock, display premature aging. Here, by using adeno-associated viruses, we rescued Bmal1 expression specifically in the skeletal muscle fibers of Bmal1-KO mice and found that this engaged the circadian clock and clock output gene expression, contributing to extended lifespan. Time course phenotypic analyses found that muscle strength, mobility, and glucose tolerance were improved with no effects on muscle mass or fiber size or type. A multiomics approach at 2 ages further determined that restored muscle Bmal1 improved glucose handling pathways while concomitantly reducing lipid and protein metabolic pathways. The improved glucose tolerance and metabolic flexibility resulted in the systemic reduction of inflammatory signatures across peripheral tissues, including liver, lung, and white adipose fat. Together, these findings highlight the critical role of muscle Bmal1 and downstream target genes for skeletal muscle homeostasis with considerable implications for systemic health.

Authors

Miguel A. Gutierrez-Monreal, Christopher A. Wolff, Eduardo E. Rijos, Mark R. Viggars, Collin M. Douglas, Vishwajeeth Pagala, Junmin Peng, Liam C. Hunt, Haocheng Ding, Zhiguang Huo, Fabio Demontis, Karyn A. Esser

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts