Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Multi-omics characterization of esophageal squamous cell carcinoma identifies molecular subtypes and therapeutic targets
Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu
Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu
View: Text | PDF
Research Article Oncology Therapeutics

Multi-omics characterization of esophageal squamous cell carcinoma identifies molecular subtypes and therapeutic targets

  • Text
  • PDF
Abstract

Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer and is characterized by an unfavorable prognosis. To elucidate the distinct molecular alterations in ESCC and investigate therapeutic targets, we performed a comprehensive analysis of transcriptomics, proteomics, and phosphoproteomics data derived from 60 paired treatment-naive ESCC and adjacent nontumor tissue samples. Additionally, we conducted a correlation analysis to describe the regulatory relationship between transcriptomic and proteomic processes, revealing alterations in key metabolic pathways. Unsupervised clustering analysis of the proteomics data stratified patients with ESCC into 3 subtypes with different molecular characteristics and clinical outcomes. Notably, subtype III exhibited the worst prognosis and enrichment in proteins associated with malignant processes, including glycolysis and DNA repair pathways. Furthermore, translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1) was validated as a potential prognostic molecule for ESCC. Moreover, integrated kinase-substrate network analysis using the phosphoproteome nominated candidate kinases as potential targets. In vitro and in vivo experiments further confirmed casein kinase II subunit α (CSNK2A1) as a potential kinase target for ESCC. These underlying data represent a valuable resource for researchers that may provide better insights into the biology and treatment of ESCC.

Authors

Dengyun Zhao, Yaping Guo, Huifang Wei, Xuechao Jia, Yafei Zhi, Guiliang He, Wenna Nie, Limeng Huang, Penglei Wang, Kyle Vaughn Laster, Zhicai Liu, Jinwu Wang, Mee-Hyun Lee, Zigang Dong, Kangdong Liu

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts