Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

MEX3B inhibits collagen production in eosinophilic nasal polyps by downregulating epithelial cell TGFBR3 mRNA stability
Jin-Xin Liu, Ao-Nan Chen, Qihong Yu, Ke-Tai Shi, Yi-Bo Liu, Cui-Lian Guo, Zhe-Zheng Wang, Yin Yao, Li Pan, Xiang Lu, Kai Xu, Heng Wang, Ming Zeng, Chaohong Liu, Robert P. Schleimer, Ning Wu, Bo Liao, Zheng Liu
Jin-Xin Liu, Ao-Nan Chen, Qihong Yu, Ke-Tai Shi, Yi-Bo Liu, Cui-Lian Guo, Zhe-Zheng Wang, Yin Yao, Li Pan, Xiang Lu, Kai Xu, Heng Wang, Ming Zeng, Chaohong Liu, Robert P. Schleimer, Ning Wu, Bo Liao, Zheng Liu
View: Text | PDF
Research Article Inflammation

MEX3B inhibits collagen production in eosinophilic nasal polyps by downregulating epithelial cell TGFBR3 mRNA stability

  • Text
  • PDF
Abstract

Although the expression of Mex3 RNA-binding family member B (MEX3B) is upregulated in human nasal epithelial cells (HNECs) predominately in the eosinophilic chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) subtype, its functions as an RNA binding protein in airway epithelial cells remain unknown. Here, we revealed the role of MEX3B based on different subtypes of CRS and demonstrated that MEX3B decreased the TGF-β receptor III (TGFBR3) mRNA level by binding to its 3′ UTR and reducing its stability in HNECs. TGF-βR3 was found to be a TGF-β2–specific coreceptor in HNECs. Knocking down or overexpressing MEX3B promoted or inhibited TGF-β2–induced phosphorylation of SMAD2 in HNECs, respectively. TGF-βR3 and phosphorylated SMAD2 levels were downregulated in CRSwNP compared with controls and CRS without nasal polyps with a more prominent downregulation in the eosinophilic CRSwNP. TGF-β2 promoted collagen production in HNECs. Collagen abundance decreased and edema scores increased in CRSwNP compared with control, again more prominently in the eosinophilic type. Collagen expression in eosinophilic CRSwNP was negatively correlated with MEX3B but positively correlated with TGF-βR3. These results suggest that MEX3B inhibits tissue fibrosis in eosinophilic CRSwNP by downregulating epithelial cell TGFBR3 expression; consequently, MEX3B might be a valuable therapeutic target against eosinophilic CRSwNP.

Authors

Jin-Xin Liu, Ao-Nan Chen, Qihong Yu, Ke-Tai Shi, Yi-Bo Liu, Cui-Lian Guo, Zhe-Zheng Wang, Yin Yao, Li Pan, Xiang Lu, Kai Xu, Heng Wang, Ming Zeng, Chaohong Liu, Robert P. Schleimer, Ning Wu, Bo Liao, Zheng Liu

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts