Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

High-avidity binding drives nucleation of amyloidogenic transthyretin monomer
Li Gao, … , Pan Liu, Jing Jin
Li Gao, … , Pan Liu, Jing Jin
Published April 8, 2022
Citation Information: JCI Insight. 2022;7(7):e150131. https://doi.org/10.1172/jci.insight.150131.
View: Text | PDF
Research Article Aging Cardiology

High-avidity binding drives nucleation of amyloidogenic transthyretin monomer

  • Text
  • PDF
Abstract

Amyloidosis involves stepwise growth of fibrils assembled from soluble precursors. Transthyretin (TTR) naturally folds into a stable tetramer, whereas conditions and mutations that foster aberrant monomer formations facilitate TTR oligomeric aggregation and subsequent fibril extension. We investigated the early assembly of oligomers by WT TTR compared with its V30M and V122I variants. We monitored time-dependent redistribution among monomer, dimer, tetramer, and oligomer contents in the presence and absence of multimeric TTR seeds. The seeds were artificially constructed recombinant multimers that contained 20–40 TTR subunits via engineered biotin-streptavidin (SA) interactions. As expected, these multimer seeds rapidly nucleated TTR monomers into larger complexes, while having less effect on dimers and tetramers. In vivo, SA-induced multimers formed TTR-like deposits in the heart and the kidney following i.v. injection in mice. While all 3 variants prominently deposited glomerulus in the kidney, only V30M resulted in extensive deposition in the heart. The cardiac TTR deposits varied in size and shape and were localized in the intermyofibrillar space along the capillaries. These results are consistent with the notion of monomeric TTR engaging in high-avidity interactions with tissue amyloids. Our multimeric induction approach provides a model for studying the initiation of TTR deposition in the heart.

Authors

Li Gao, Xinfang Xie, Pan Liu, Jing Jin

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts