Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
High-avidity binding drives nucleation of amyloidogenic transthyretin monomer
Li Gao, … , Pan Liu, Jing Jin
Li Gao, … , Pan Liu, Jing Jin
Published April 8, 2022
Citation Information: JCI Insight. 2022;7(7):e150131. https://doi.org/10.1172/jci.insight.150131.
View: Text | PDF
Research Article Aging Cardiology

High-avidity binding drives nucleation of amyloidogenic transthyretin monomer

  • Text
  • PDF
Abstract

Amyloidosis involves stepwise growth of fibrils assembled from soluble precursors. Transthyretin (TTR) naturally folds into a stable tetramer, whereas conditions and mutations that foster aberrant monomer formations facilitate TTR oligomeric aggregation and subsequent fibril extension. We investigated the early assembly of oligomers by WT TTR compared with its V30M and V122I variants. We monitored time-dependent redistribution among monomer, dimer, tetramer, and oligomer contents in the presence and absence of multimeric TTR seeds. The seeds were artificially constructed recombinant multimers that contained 20–40 TTR subunits via engineered biotin-streptavidin (SA) interactions. As expected, these multimer seeds rapidly nucleated TTR monomers into larger complexes, while having less effect on dimers and tetramers. In vivo, SA-induced multimers formed TTR-like deposits in the heart and the kidney following i.v. injection in mice. While all 3 variants prominently deposited glomerulus in the kidney, only V30M resulted in extensive deposition in the heart. The cardiac TTR deposits varied in size and shape and were localized in the intermyofibrillar space along the capillaries. These results are consistent with the notion of monomeric TTR engaging in high-avidity interactions with tissue amyloids. Our multimeric induction approach provides a model for studying the initiation of TTR deposition in the heart.

Authors

Li Gao, Xinfang Xie, Pan Liu, Jing Jin

×

Full Text PDF | Download (12.49 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts