Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

ARPC1B binds WASP to control actin polymerization and curtail tonic signaling in B cells
Gabriella Leung, Yuhuan Zhou, Philip Ostrowski, Sivakami Mylvaganam, Parastoo Boroumand, Daniel J. Mulder, Conghui Guo, Aleixo M. Muise, Spencer A. Freeman
Gabriella Leung, Yuhuan Zhou, Philip Ostrowski, Sivakami Mylvaganam, Parastoo Boroumand, Daniel J. Mulder, Conghui Guo, Aleixo M. Muise, Spencer A. Freeman
View: Text | PDF
Research Article Cell biology Immunology

ARPC1B binds WASP to control actin polymerization and curtail tonic signaling in B cells

  • Text
  • PDF
Abstract

Immune cells exhibit low-level, constitutive signaling at rest (tonic signaling). Such tonic signals are required for fundamental processes, including the survival of B lymphocytes, but when they are elevated by genetic or environmental causes, they can lead to autoimmunity. Events that control ongoing signal transduction are, therefore, tightly regulated by submembrane cytoskeletal polymers like F-actin. The actin-binding proteins that underpin the process, however, are poorly described. By investigating patients with ARPC1B deficiency, we report that ARPC1B-containing ARP2/3 complexes are stimulated by Wiskott Aldrich Syndrome protein (WASP) to nucleate the branched actin networks that control tonic signaling from the B cell receptor (BCR). Despite an upregulation of ARPC1A, ARPC1B-deficient cells were not capable of WASP-mediated nucleation by ARP2/3, and this caused the loss of WASP-dependent structures, including podosomes in macrophages and lamellipodia in B cells. In the B cell compartment, ARPC1B deficiency also led to weakening of the cortical F-actin cytoskeleton that normally curtails the diffusion of BCRs and ultimately resulted in increased tonic lipid signaling, oscillatory calcium release from the endoplasmic reticulum (ER), and phosphorylated Akt. These events contributed to skewing the threshold for B cell activation in response to microbial-associated molecular patterns (MAMPs). Thus, ARPC1B is critical for ARP2/3 complexes to control steady-state signaling of immune cells.

Authors

Gabriella Leung, Yuhuan Zhou, Philip Ostrowski, Sivakami Mylvaganam, Parastoo Boroumand, Daniel J. Mulder, Conghui Guo, Aleixo M. Muise, Spencer A. Freeman

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts