Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising/recruitment
  • Contact

Submit a Letter to the Editor

Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions
Sean M. Fortier, … , Giovanni Ligresti, Marc Peters-Golden
Sean M. Fortier, … , Giovanni Ligresti, Marc Peters-Golden
Published February 9, 2021
Citation Information: JCI Insight. 2021;6(6):e144799. https://doi.org/10.1172/jci.insight.144799.
View: Text | PDF
Research Article Cell biology Pulmonology

Myofibroblast dedifferentiation proceeds via distinct transcriptomic and phenotypic transitions

  • Text
  • PDF
Abstract

Myofibroblasts are the major cellular source of collagen, and their accumulation — via differentiation from fibroblasts and resistance to apoptosis — is a hallmark of tissue fibrosis. Clearance of myofibroblasts by dedifferentiation and restoration of apoptosis sensitivity has the potential to reverse fibrosis. Prostaglandin E2 (PGE2) and mitogens such as FGF2 have each been shown to dedifferentiate myofibroblasts, but — to our knowledge — the resultant cellular phenotypes have neither been comprehensively characterized or compared. Here, we show that PGE2 elicited dedifferentiation of human lung myofibroblasts via cAMP/PKA, while FGF2 utilized MEK/ERK. The 2 mediators yielded transitional cells with distinct transcriptomes, with FGF2 promoting but PGE2 inhibiting proliferation and survival. The gene expression pattern in fibroblasts isolated from the lungs of mice undergoing resolution of experimental fibrosis resembled that of myofibroblasts treated with PGE2 in vitro. We conclude that myofibroblast dedifferentiation can proceed via distinct programs exemplified by treatment with PGE2 and FGF2, with dedifferentiation occurring in vivo most closely resembling the former.

Authors

Sean M. Fortier, Loka R. Penke, Dana King, Tho X. Pham, Giovanni Ligresti, Marc Peters-Golden

×

Guidelines: The Editorial Board will only consider letters that we deem relevant and of interest to our readers. We will not post data that have not been subjected to peer review, nor will we post letters that are essentially a reiteration of another letter. We reserve the right to edit any letter for length, content, and clarity. Authors will be notified by e-mail if their letters were accepted. No appeals will be considered.

Specific requirements: All letters must be 400 words or fewer. You may enter the letter as plain text or HTML. The author's name and e-mail address are required, and will be posted with the letter. All possible conflicts of interest must be noted, even if they are not posted. If you wish to include a figure (keep in mind that non-peer-reviewed data will not be posted), please contact the editors directly at editors@the-jci.org.

This field is required
This field is required
This field is required
This field is required
This field is required

This field is required

Copyright © 2021 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts