Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk
Debby Ngo, Mark D. Benson, Jonathan Z. Long, Zsu-Zsu Chen, Ruiqi Wang, Anjali K. Nath, Michelle J. Keyes, Dongxiao Shen, Sumita Sinha, Eric Kuhn, Jordan E. Morningstar, Xu Shi, Bennet D. Peterson, Christopher Chan, Daniel H. Katz, Usman A. Tahir, Laurie A. Farrell, Olle Melander, Jonathan D. Mosley, Steven A. Carr, Ramachandran S. Vasan, Martin G. Larson, J. Gustav Smith, Thomas J. Wang, Qiong Yang, Robert E. Gerszten
Debby Ngo, Mark D. Benson, Jonathan Z. Long, Zsu-Zsu Chen, Ruiqi Wang, Anjali K. Nath, Michelle J. Keyes, Dongxiao Shen, Sumita Sinha, Eric Kuhn, Jordan E. Morningstar, Xu Shi, Bennet D. Peterson, Christopher Chan, Daniel H. Katz, Usman A. Tahir, Laurie A. Farrell, Olle Melander, Jonathan D. Mosley, Steven A. Carr, Ramachandran S. Vasan, Martin G. Larson, J. Gustav Smith, Thomas J. Wang, Qiong Yang, Robert E. Gerszten
View: Text | PDF
Research Article Endocrinology

Proteomic profiling reveals biomarkers and pathways in type 2 diabetes risk

  • Text
  • PDF
Abstract

Recent advances in proteomic technologies have made high-throughput profiling of low-abundance proteins in large epidemiological cohorts increasingly feasible. We investigated whether aptamer-based proteomic profiling could identify biomarkers associated with future development of type 2 diabetes (T2DM) beyond known risk factors. We identified dozens of markers with highly significant associations with future T2DM across 2 large longitudinal cohorts (n = 2839) followed for up to 16 years. We leveraged proteomic, metabolomic, genetic, and clinical data from humans to nominate 1 specific candidate to test for potential causal relationships in model systems. Our studies identified functional effects of aminoacylase 1 (ACY1), a top protein association with future T2DM risk, on amino acid metabolism and insulin homeostasis in vitro and in vivo. Furthermore, a loss-of-function variant associated with circulating levels of the biomarker WAP, Kazal, immunoglobulin, Kunitz, and NTR domain–containing protein 2 (WFIKKN2) was, in turn, associated with fasting glucose, hemoglobin A1c, and HOMA-IR measurements in humans. In addition to identifying potentially novel disease markers and pathways in T2DM, we provide publicly available data to be leveraged for insights about gene function and disease pathogenesis in the context of human metabolism.

Authors

Debby Ngo, Mark D. Benson, Jonathan Z. Long, Zsu-Zsu Chen, Ruiqi Wang, Anjali K. Nath, Michelle J. Keyes, Dongxiao Shen, Sumita Sinha, Eric Kuhn, Jordan E. Morningstar, Xu Shi, Bennet D. Peterson, Christopher Chan, Daniel H. Katz, Usman A. Tahir, Laurie A. Farrell, Olle Melander, Jonathan D. Mosley, Steven A. Carr, Ramachandran S. Vasan, Martin G. Larson, J. Gustav Smith, Thomas J. Wang, Qiong Yang, Robert E. Gerszten

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts