Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis
Wan-Chen Hsieh, … , Stephanie M. Stanford, Nunzio Bottini
Wan-Chen Hsieh, … , Stephanie M. Stanford, Nunzio Bottini
Published October 15, 2020
Citation Information: JCI Insight. 2020;5(20):e141868. https://doi.org/10.1172/jci.insight.141868.
View: Text | PDF
Research Article Inflammation

PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis

  • Text
  • PDF
Abstract

Loss-of-function variants of protein tyrosine phosphatase non-receptor type 2 (PTPN2) enhance risk of inflammatory bowel disease and rheumatoid arthritis; however, whether the association between PTPN2 and autoimmune arthritis depends on gut inflammation is unknown. Here we demonstrate that induction of subclinical intestinal inflammation exacerbates development of autoimmune arthritis in SKG mice. Ptpn2-haploinsufficient SKG mice — modeling human carriers of disease-associated variants of PTPN2 — displayed enhanced colitis-induced arthritis and joint accumulation of Tregs expressing RAR-related orphan receptor γT (RORγt) — a gut-enriched Treg subset that can undergo conversion into FoxP3–IL-17+ arthritogenic exTregs. SKG colonic Tregs underwent higher conversion into arthritogenic exTregs when compared with peripheral Tregs, which was exacerbated by haploinsufficiency of Ptpn2. Ptpn2 haploinsufficiency led to selective joint accumulation of RORγt-expressing Tregs expressing the colonic marker G protein–coupled receptor 15 (GPR15) in arthritic mice and selectively enhanced conversion of GPR15+ Tregs into exTregs in vitro and in vivo. Inducible Treg-specific haploinsufficiency of Ptpn2 enhanced colitis-induced SKG arthritis and led to specific joint accumulation of GPR15+ exTregs. Our data validate the SKG model for studies at the interface between intestinal and joint inflammation and suggest that arthritogenic variants of PTPN2 amplify the link between gut inflammation and arthritis through conversion of colonic Tregs into exTregs.

Authors

Wan-Chen Hsieh, Mattias N.D. Svensson, Martina Zoccheddu, Michael L. Tremblay, Shimon Sakaguchi, Stephanie M. Stanford, Nunzio Bottini

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2023 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts