Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia
Na Man, Gloria Mas, Daniel L. Karl, Jun Sun, Fan Liu, Qin Yang, Miguel Torres-Martin, Hidehiro Itonaga, Concepcion Martinez, Shi Chen, Ye Xu, Stephanie Duffort, Pierre-Jacques Hamard, Chuan Chen, Beth E. Zucconi, Luisa Cimmino, Feng-Chun Yang, Mingjiang Xu, Philip A. Cole, Maria E. Figueroa, Stephen D. Nimer
Na Man, Gloria Mas, Daniel L. Karl, Jun Sun, Fan Liu, Qin Yang, Miguel Torres-Martin, Hidehiro Itonaga, Concepcion Martinez, Shi Chen, Ye Xu, Stephanie Duffort, Pierre-Jacques Hamard, Chuan Chen, Beth E. Zucconi, Luisa Cimmino, Feng-Chun Yang, Mingjiang Xu, Philip A. Cole, Maria E. Figueroa, Stephen D. Nimer
View: Text | PDF
Research Article Hematology

p300 suppresses the transition of myelodysplastic syndromes to acute myeloid leukemia

  • Text
  • PDF
Abstract

Myelodysplastic syndromes (MDS) are hematopoietic stem and progenitor cell (HSPC) malignancies characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Epigenetic regulators are recurrently mutated in MDS, directly implicating epigenetic dysregulation in MDS pathogenesis. Here, we identified a tumor suppressor role of the acetyltransferase p300 in clinically relevant MDS models driven by mutations in the epigenetic regulators TET2, ASXL1, and SRSF2. The loss of p300 enhanced the proliferation and self-renewal capacity of Tet2-deficient HSPCs, resulting in an increased HSPC pool and leukemogenicity in primary and transplantation mouse models. Mechanistically, the loss of p300 in Tet2-deficient HSPCs altered enhancer accessibility and the expression of genes associated with differentiation, proliferation, and leukemia development. Particularly, p300 loss led to an increased expression of Myb, and the depletion of Myb attenuated the proliferation of HSPCs and improved the survival of leukemia-bearing mice. Additionally, we show that chemical inhibition of p300 acetyltransferase activity phenocopied Ep300 deletion in Tet2-deficient HSPCs, whereas activation of p300 activity with a small molecule impaired the self-renewal and leukemogenicity of Tet2-deficient cells. This suggests a potential therapeutic application of p300 activators in the treatment of MDS with TET2 inactivating mutations.

Authors

Na Man, Gloria Mas, Daniel L. Karl, Jun Sun, Fan Liu, Qin Yang, Miguel Torres-Martin, Hidehiro Itonaga, Concepcion Martinez, Shi Chen, Ye Xu, Stephanie Duffort, Pierre-Jacques Hamard, Chuan Chen, Beth E. Zucconi, Luisa Cimmino, Feng-Chun Yang, Mingjiang Xu, Philip A. Cole, Maria E. Figueroa, Stephen D. Nimer

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts