Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Implementing cell-free DNA of pancreatic cancer patient–derived organoids for personalized oncology
Zahra Dantes, et al.
Zahra Dantes, et al.
View: Text | PDF
Research Article Gastroenterology Oncology

Implementing cell-free DNA of pancreatic cancer patient–derived organoids for personalized oncology

  • Text
  • PDF
Abstract

One of the major challenges in using pancreatic cancer patient–derived organoids (PDOs) in precision oncology is the time from biopsy to functional characterization. This is particularly true for endoscopic ultrasound-guided fine-needle aspiration biopsies, typically resulting in specimens with limited tumor cell yield. Here, we tested conditioned media of individual PDOs for cell-free DNA to detect driver mutations already early on during the expansion process to accelerate the genetic characterization of PDOs as well as subsequent functional testing. Importantly, genetic alterations detected in the PDO supernatant, collected as early as 72 hours after biopsy, recapitulate the mutational profile of the primary tumor, indicating suitability of this approach to subject PDOs to drug testing in a reduced time frame. In addition, we demonstrated that this workflow was practicable, even in patients for whom the amount of tumor material was not sufficient for molecular characterization by established means. Together, our findings demonstrate that generating PDOs from very limited biopsy material permits molecular profiling and drug testing. With our approach, this can be achieved in a rapid and feasible fashion with broad implications in clinical practice.

Authors

Zahra Dantes, Hsi-Yu Yen, Nicole Pfarr, Christof Winter, Katja Steiger, Alexander Muckenhuber, Alexander Hennig, Sebastian Lange, Thomas Engleitner, Rupert Öllinger, Roman Maresch, Felix Orben, Irina Heid, Georgios Kaissis, Kuangyu Shi, Geoffrey Topping, Fabian Stögbauer, Matthias Wirth, Katja Peschke, Aristeidis Papargyriou, Massoud Rezaee-Oghazi, Karin Feldmann, Arlett P.G. Schäfer, Raphela Ranjan, Clara Lubeseder-Martellato, Daniel E. Stange, Thilo Welsch, Marc Martignoni, Güralp O. Ceyhan, Helmut Friess, Alexander Herner, Lucia Liotta, Matthias Treiber, Guido von Figura, Mohamed Abdelhafez, Peter Klare, Christoph Schlag, Hana Algül, Jens Siveke, Rickmer Braren, Gregor Weirich, Wilko Weichert, Dieter Saur, Roland Rad, Roland M. Schmid, Günter Schneider, Maximilian Reichert

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2026 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts