Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes
Brittany A. Eckhardt, Jennifer L. Rowsey, Brianne S. Thicke, Daniel G. Fraser, Katherine L. O’Grady, Olga P. Bondar, Jolaine M. Hines, Ravinder J. Singh, Andrew R. Thoreson, Kuntol Rakshit, Anthony B. Lagnado, João F. Passos, Adrian Vella, Aleksey V. Matveyenko, Sundeep Khosla, David G. Monroe, Joshua N. Farr
Brittany A. Eckhardt, Jennifer L. Rowsey, Brianne S. Thicke, Daniel G. Fraser, Katherine L. O’Grady, Olga P. Bondar, Jolaine M. Hines, Ravinder J. Singh, Andrew R. Thoreson, Kuntol Rakshit, Anthony B. Lagnado, João F. Passos, Adrian Vella, Aleksey V. Matveyenko, Sundeep Khosla, David G. Monroe, Joshua N. Farr
View: Text | PDF
Research Article Bone biology

Accelerated osteocyte senescence and skeletal fragility in mice with type 2 diabetes

  • Text
  • PDF
Abstract

The worldwide prevalence of type 2 diabetes (T2D) is increasing. Despite normal to higher bone density, patients with T2D paradoxically have elevated fracture risk resulting, in part, from poor bone quality. Advanced glycation endproducts (AGEs) and inflammation as a consequence of enhanced receptor for AGE (RAGE) signaling are hypothesized culprits, although the exact mechanisms underlying skeletal dysfunction in T2D are unclear. Lack of inducible models that permit environmental (in obesity) and temporal (after skeletal maturity) control of T2D onset has hampered progress. Here, we show in C57BL/6 mice that a onetime pharmacological intervention (streptozotocin, STZ) initiated in adulthood combined with high-fat diet–induced (HFD-induced) obesity caused hallmark features of human adult-onset T2D, including prolonged hyperglycemia, insulin resistance, and pancreatic β cell dysfunction, but not complete destruction. In addition, HFD/STZ (i.e., T2D) resulted in several changes in bone quality that closely mirror those observed in humans, including compromised bone microarchitecture, reduced biomechanical strength, impaired bone material properties, altered bone turnover, and elevated levels of the AGE CML in bone and blood. Furthermore, T2D led to the premature accumulation of senescent osteocytes with a unique proinflammatory signature. These findings highlight the RAGE pathway and senescent cells as potential targets to treat diabetic skeletal fragility.

Authors

Brittany A. Eckhardt, Jennifer L. Rowsey, Brianne S. Thicke, Daniel G. Fraser, Katherine L. O’Grady, Olga P. Bondar, Jolaine M. Hines, Ravinder J. Singh, Andrew R. Thoreson, Kuntol Rakshit, Anthony B. Lagnado, João F. Passos, Adrian Vella, Aleksey V. Matveyenko, Sundeep Khosla, David G. Monroe, Joshua N. Farr

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts