Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Physician-Scientist Development
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • In-Press Preview
    • Resource and Technical Advances
    • Clinical Research and Public Health
    • Research Letters
    • Editorials
    • Perspectives
    • Physician-Scientist Development
    • Reviews
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Resource and Technical Advances
  • Clinical Research and Public Health
  • Research Letters
  • Editorials
  • Perspectives
  • Physician-Scientist Development
  • Reviews
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Wnt/β-catenin–activated Ewing sarcoma cells promote the angiogenic switch
Allegra G. Hawkins, Elisabeth A. Pedersen, Sydney Treichel, Kelsey Temprine, Colin Sperring, Jay A. Read, Brian Magnuson, Rashmi Chugh, Elizabeth R. Lawlor
Allegra G. Hawkins, Elisabeth A. Pedersen, Sydney Treichel, Kelsey Temprine, Colin Sperring, Jay A. Read, Brian Magnuson, Rashmi Chugh, Elizabeth R. Lawlor
View: Text | PDF
Research Article Cell biology Oncology

Wnt/β-catenin–activated Ewing sarcoma cells promote the angiogenic switch

  • Text
  • PDF
Abstract

Wnt/β-catenin signaling is active in small subpopulations of Ewing sarcoma cells, and these cells display a more metastatic phenotype, in part due to antagonism of EWS-FLI1–dependent transcriptional activity. Importantly, these β-catenin–activated Ewing sarcoma cells also alter secretion of extracellular matrix (ECM) proteins. We thus hypothesized that, in addition to cell-autonomous mechanisms, Wnt/β-catenin–active tumor cells might contribute to disease progression by altering the tumor microenvironment (TME). Analysis of transcriptomic data from primary patient biopsies and from β-catenin–active versus –nonactive tumor cells identified angiogenic switch genes as being highly and reproducibly upregulated in the context of β-catenin activation. In addition, in silico and in vitro analyses, along with chorioallantoic membrane assays, demonstrated that β-catenin–activated Ewing cells secreted factors that promote angiogenesis. In particular, activation of canonical Wnt signaling leads Ewing sarcoma cells to upregulate expression and secretion of proangiogenic ECM proteins, collectively termed the angiomatrix. Significantly, our data show that induction of the angiomatrix by Wnt-responsive tumor cells is indirect and is mediated by TGF-β. Mechanistically, Wnt/β-catenin signaling antagonizes EWS-FLI1–dependent repression of TGF-β receptor type 2, thereby sensitizing tumor cells to TGF-β ligands. Together, these findings suggest that Wnt/β-catenin–active tumor cells can contribute to Ewing sarcoma progression by promoting angiogenesis in the local TME.

Authors

Allegra G. Hawkins, Elisabeth A. Pedersen, Sydney Treichel, Kelsey Temprine, Colin Sperring, Jay A. Read, Brian Magnuson, Rashmi Chugh, Elizabeth R. Lawlor

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2025 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts