Go to The Journal of Clinical Investigation
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Immunology
    • Metabolism
    • Nephrology
    • Oncology
    • Pulmonology
    • All ...
  • Videos
  • Collections
    • Resource and Technical Advances
    • Clinical Medicine
    • Reviews
    • Editorials
    • Perspectives
    • Top read articles
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • In-Press Preview
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Transfers
  • Advertising
  • Job board
  • Contact

Submit a comment

Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy
Jie Liu, … , Irving L. Weissman, Jens-Peter Volkmer
Jie Liu, … , Irving L. Weissman, Jens-Peter Volkmer
Published May 19, 2020
Citation Information: JCI Insight. 2020;5(12):e134728. https://doi.org/10.1172/jci.insight.134728.
View: Text | PDF
Research Article Immunology Therapeutics

Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy

  • Text
  • PDF
Abstract

The CD47/signal regulatory protein α (Cd47/SIRPα)interaction provides a macrophage immune checkpoint pathway that plays a critical role in cancer immune evasion across multiple cancers. Here, we report the engineering of a humanized anti-SIRPα monoclonal antibody (1H9) for antibody target cancer therapy. 1H9 has broad activity across a wide range of SIRPα variants. Binding of 1H9 to SIRPα blocks its interaction with CD47, thereby promoting macrophage-mediated phagocytosis of cancer cells. Preclinical studies in vitro and in vivo demonstrate that 1H9 synergizes with other therapeutic antibodies to promote phagocytosis of tumor cells and inhibit tumor growth in both syngeneic and xenograft tumor models, leading to survival benefit. Thus, 1H9 can potentially act as a universal agent to enhance therapeutic efficacy when used in combination with most tumor-targeting antibodies. We report a comparison of anti-SIRPα and anti-CD47 antibodies in CD47/SIRPα double-humanized mice and found that 1H9 exhibits a substantially reduced antigen sink effect due to the limited tissue distribution of SIRPα expression. Toxicokinetic studies in nonhuman primates show that 1H9 is well tolerated, with no treatment-related adverse effects noted. These data highlight the clinical potential of 1H9 as a pan-therapeutic with the desired properties when used in combination with tumor-targeting antibodies.

Authors

Jie Liu, Seethu Xavy, Shirley Mihardja, Sharline Chen, Kavitha Sompalli, Dongdong Feng, Timothy Choi, Balaji Agoram, Ravindra Majeti, Irving L. Weissman, Jens-Peter Volkmer

×

Guidelines

The Editorial Board will only consider comments that are deemed relevant and of interest to readers. The Journal will not post data that have not been subjected to peer review; or a comment that is essentially a reiteration of another comment.

  • Comments appear on the Journal’s website and are linked from the original article’s web page.
  • Authors are notified by email if their comments are posted.
  • The Journal reserves the right to edit comments for length and clarity.
  • No appeals will be considered.
  • Comments are not indexed in PubMed.

Specific requirements

  • Maximum length, 400 words
  • Entered as plain text or HTML
  • Author’s name and email address, to be posted with the comment
  • Declaration of all potential conflicts of interest (even if these are not ultimately posted); see the Journal’s conflict-of-interest policy
  • Comments may not include figures
This field is required
This field is required
This field is required
This field is required
This field is required
This field is required

Copyright © 2022 American Society for Clinical Investigation
ISSN 2379-3708

Sign up for email alerts